- -

Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults

Mostrar el registro completo del ítem

Bertolesi, E.; Torres Górriz, B.; Adam, JM.; Calderón García, PA.; Moragues, JJ. (2020). Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults. Engineering Structures. 220:1-15. https://doi.org/10.1016/j.engstruct.2020.110978

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161865

Ficheros en el ítem

Metadatos del ítem

Título: Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults
Autor: Bertolesi, Elisa Torres Górriz, Benjamín Adam, Jose M Calderón García, Pedro Antonio Moragues, Juan J
Entidad UPV: Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] This paper presents the experimental results obtained from tests on two masonry vaults reinforced by Textile Reinforced Mortar (TRM) materials subjected to monotonic and cyclic vertical settlements in one of their ...[+]
Palabras clave: Textile Reinforced Mortar (TRM) , Timbrel masonry cross vaults , Settlement-induced damages , Masonry strengthening
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Engineering Structures. (issn: 0141-0296 )
DOI: 10.1016/j.engstruct.2020.110978
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.engstruct.2020.110978
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-10-17/
info:eu-repo/grantAgreement/MINECO//BIA2014-59036-R/ES/SISTEMAS INTELIGENTES PARA LA MONITORIZACION Y EVALUACION DE EDIFICIOS DE OBRA DE FABRICA TRAS SER SOMETIDOS A ACCIONES EXTRAORDINARIAS: RIESGOS GEOTECNICOS, FUEGO, IMPACTOS,/
Agradecimientos:
The authors wish to express their gratitude to the Spanish Ministry of Economy, Industry and Competitiveness for the funding provided through Project BIA 2014-59036-R, and also to LIC-Levantina Ingenieria y Construccion ...[+]
Tipo: Artículo

References

Torres, B., Bertolesi, E., Moragues, J. J., Calderón, P. A., & Adam, J. M. (2019). Experimental investigation of a full-scale timbrel masonry cross vault subjected to vertical settlement. Construction and Building Materials, 221, 421-432. doi:10.1016/j.conbuildmat.2019.06.015

Torres, B., Bertolesi, E., Calderón, P. A., Moragues, J. J., & Adam, J. M. (2019). A full-scale timbrel cross vault subjected to vertical cyclical displacements in one of its supports. Engineering Structures, 183, 791-804. doi:10.1016/j.engstruct.2019.01.054

Kouris, L. A. S., & Triantafillou, T. C. (2018). State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Construction and Building Materials, 188, 1221-1233. doi:10.1016/j.conbuildmat.2018.08.039 [+]
Torres, B., Bertolesi, E., Moragues, J. J., Calderón, P. A., & Adam, J. M. (2019). Experimental investigation of a full-scale timbrel masonry cross vault subjected to vertical settlement. Construction and Building Materials, 221, 421-432. doi:10.1016/j.conbuildmat.2019.06.015

Torres, B., Bertolesi, E., Calderón, P. A., Moragues, J. J., & Adam, J. M. (2019). A full-scale timbrel cross vault subjected to vertical cyclical displacements in one of its supports. Engineering Structures, 183, 791-804. doi:10.1016/j.engstruct.2019.01.054

Kouris, L. A. S., & Triantafillou, T. C. (2018). State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Construction and Building Materials, 188, 1221-1233. doi:10.1016/j.conbuildmat.2018.08.039

Del Zoppo, M., Di Ludovico, M., Balsamo, A., & Prota, A. (2019). In-plane shear capacity of tuff masonry walls with traditional and innovative Composite Reinforced Mortars (CRM). Construction and Building Materials, 210, 289-300. doi:10.1016/j.conbuildmat.2019.03.133

Carozzi, F. G., Bellini, A., D’Antino, T., de Felice, G., Focacci, F., Hojdys, Ł., … Poggi, C. (2017). Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Composites Part B: Engineering, 128, 100-119. doi:10.1016/j.compositesb.2017.06.018

Leone, M., Aiello, M. A., Balsamo, A., Carozzi, F. G., Ceroni, F., Corradi, M., … Saenger, D. (2017). Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate. Composites Part B: Engineering, 127, 196-214. doi:10.1016/j.compositesb.2017.06.028

Caggegi, C., Carozzi, F. G., De Santis, S., Fabbrocino, F., Focacci, F., Hojdys, Ł., … Zuccarino, L. (2017). Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Composites Part B: Engineering, 127, 175-195. doi:10.1016/j.compositesb.2017.05.048

Caggegi, C., Lanoye, E., Djama, K., Bassil, A., & Gabor, A. (2017). Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios. Composites Part B: Engineering, 130, 90-102. doi:10.1016/j.compositesb.2017.07.027

Ascione, L., de Felice, G., & De Santis, S. (2015). A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems. Composites Part B: Engineering, 78, 497-506. doi:10.1016/j.compositesb.2015.03.079

Bertolesi, E., Carozzi, F. G., Milani, G., & Poggi, C. (2014). Numerical modeling of Fabric Reinforce Cementitious Matrix composites (FRCM) in tension. Construction and Building Materials, 70, 531-548. doi:10.1016/j.conbuildmat.2014.08.006

Sneed, L. H., D’Antino, T., Carloni, C., & Pellegrino, C. (2015). A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests. Cement and Concrete Composites, 64, 37-48. doi:10.1016/j.cemconcomp.2015.07.007

Wang, X., Lam, C. C., & Iu, V. P. (2019). Comparison of different types of TRM composites for strengthening masonry panels. Construction and Building Materials, 219, 184-194. doi:10.1016/j.conbuildmat.2019.05.179

Parisi, F., Iovinella, I., Balsamo, A., Augenti, N., & Prota, A. (2013). In-plane behaviour of tuff masonry strengthened with inorganic matrix–grid composites. Composites Part B: Engineering, 45(1), 1657-1666. doi:10.1016/j.compositesb.2012.09.068

Faella, C., Martinelli, E., Nigro, E., & Paciello, S. (2010). Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign. Construction and Building Materials, 24(1), 84-93. doi:10.1016/j.conbuildmat.2009.08.019

Augenti, N., Parisi, F., Prota, A., & Manfredi, G. (2011). In-Plane Lateral Response of a Full-Scale Masonry Subassemblage with and without an Inorganic Matrix-Grid Strengthening System. Journal of Composites for Construction, 15(4), 578-590. doi:10.1061/(asce)cc.1943-5614.0000193

Garmendia, L., Larrinaga, P., San-Mateos, R., & San-José, J. T. (2015). Strengthening masonry vaults with organic and inorganic composites: An experimental approach. Materials & Design, 85, 102-114. doi:10.1016/j.matdes.2015.06.150

Ismail, N., & Ingham, J. M. (2016). In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Engineering Structures, 118, 167-177. doi:10.1016/j.engstruct.2016.03.041

Kariou, F. A., Triantafyllou, S. P., Bournas, D. A., & Koutas, L. N. (2018). Out-of-plane response of masonry walls strengthened using textile-mortar system. Construction and Building Materials, 165, 769-781. doi:10.1016/j.conbuildmat.2018.01.026

D’Ambra, C., Lignola, G. P., Prota, A., Sacco, E., & Fabbrocino, F. (2018). Experimental performance of FRCM retrofit on out-of-plane behaviour of clay brick walls. Composites Part B: Engineering, 148, 198-206. doi:10.1016/j.compositesb.2018.04.062

Kariou, F. A., Triantafyllou, S. P., & Bournas, D. A. (2019). TRM strengthening of masonry arches: An experimental investigation on the effect of strengthening layout and textile fibre material. Composites Part B: Engineering, 173, 106765. doi:10.1016/j.compositesb.2019.04.026

Giamundo, V., Lignola, G. P., Maddaloni, G., Balsamo, A., Prota, A., & Manfredi, G. (2015). Experimental investigation of the seismic performances of IMG reinforcement on curved masonry elements. Composites Part B: Engineering, 70, 53-63. doi:10.1016/j.compositesb.2014.10.039

Garmendia, L., San-José, J. T., García, D., & Larrinaga, P. (2011). Rehabilitation of masonry arches with compatible advanced composite material. Construction and Building Materials, 25(12), 4374-4385. doi:10.1016/j.conbuildmat.2011.03.065

Alecci, V., Misseri, G., Rovero, L., Stipo, G., De Stefano, M., Feo, L., & Luciano, R. (2016). Experimental investigation on masonry arches strengthened with PBO-FRCM composite. Composites Part B: Engineering, 100, 228-239. doi:10.1016/j.compositesb.2016.05.063

Bertolesi, E., Adam, J. M., Rinaudo, P., & Calderón, P. A. (2019). Research and practice on masonry cross vaults – A review. Engineering Structures, 180, 67-88. doi:10.1016/j.engstruct.2018.10.085

Angelillo, M. (2015). Static analysis of a Guastavino helical stair as a layered masonry shell. Composite Structures, 119, 298-304. doi:10.1016/j.compstruct.2014.09.007

Maddaloni, G., Di Ludovico, M., Balsamo, A., Maddaloni, G., & Prota, A. (2018). Dynamic assessment of innovative retrofit techniques for masonry buildings. Composites Part B: Engineering, 147, 147-161. doi:10.1016/j.compositesb.2018.04.038

Parisi, F., & Augenti, N. (2013). Earthquake damages to cultural heritage constructions and simplified assessment of artworks. Engineering Failure Analysis, 34, 735-760. doi:10.1016/j.engfailanal.2013.01.005

Augenti, N., & Parisi, F. (2010). Learning from Construction Failures due to the 2009 L’Aquila, Italy, Earthquake. Journal of Performance of Constructed Facilities, 24(6), 536-555. doi:10.1061/(asce)cf.1943-5509.0000122

D’Altri, A. M., Castellazzi, G., de Miranda, S., & Tralli, A. (2017). Seismic-induced damage in historical masonry vaults: A case-study in the 2012 Emilia earthquake-stricken area. Journal of Building Engineering, 13, 224-243. doi:10.1016/j.jobe.2017.08.005

Croci, G. (1998). The Basilica of St. Francis of Assisi after the September 1997 Earthquake. Structural Engineering International, 8(1), 56-58. doi:10.2749/101686698780489667

Sáez Riquelme B, Iglesias Salón Valencianas S XVIII. Levantamiento gráfico, análisis geométrico y constructivo, patología común. (Ph.D thesis). Departamento de Sistemas Industriales y Diseño. Universitat Jaume I, Castellón (Spain), 2013. n.d.

https://www.mapei.com/it/en/products-and-solutions/products/detail/mapegrid-g-220.

https://www.mapei.com/it/en/products-and-solutions/products/detail/planitop-hdm-restauro.

Rotunno, T., Fagone, M., Bertolesi, E., Grande, E., & Milani, G. (2019). Curved masonry pillars reinforced with anchored CFRP sheets: An experimental analysis. Composites Part B: Engineering, 174, 107008. doi:10.1016/j.compositesb.2019.107008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem