- -

Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bertolesi, Elisa es_ES
dc.contributor.author Torres Górriz, Benjamín es_ES
dc.contributor.author Adam, Jose M es_ES
dc.contributor.author Calderón García, Pedro Antonio es_ES
dc.contributor.author Moragues, Juan J es_ES
dc.date.accessioned 2021-02-19T04:34:20Z
dc.date.available 2021-02-19T04:34:20Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 0141-0296 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161865
dc.description.abstract [EN] This paper presents the experimental results obtained from tests on two masonry vaults reinforced by Textile Reinforced Mortar (TRM) materials subjected to monotonic and cyclic vertical settlements in one of their sup-ports. Two full-scale square masonry timbrel vaults were built in one of ICITECH's laboratories at the Universitat Politecnica de Valencia (Valencia, Spain) using the traditional Catalan layered-construction technique, with various layers of clay tiles arranged in two perpendicular masonry textures joined by lime and cement mortar joints. Due to their peculiar geometric and mechanical features, i.e. their high slenderness ratio, low tensile strength and high material heterogeneity, these structures are especially prone to damage from high-risk events such as soil settlement or seismic excitation. To evaluate their response to vertical support displacements, both vaults were pre-damaged by either vertical monotonic or cyclic settlements. They were then strengthened by a radial TRM strengthening configuration and re-tested until failure. A complex network of traditional and optical sensors was used to monitor displacements, deformation and the development of the cracking mechanism under both settlement conditions. The results obtained show that TRM materials can be used to effectively repair severely damaged masonry timbrel vaults, helping to partially restore the initial elastic stiffness, as well as doubling the vaults' elastic phase and ultimate displacements. In addition, TRM materials did not alter the stiffness degradation trend, although they had a strong effect on peak reaction degradation and failure modes. This investigation represents a valuable and unique source of information about the efficacy of TRM materials to repair full-scale pre-damaged masonry timbrel vaults. es_ES
dc.description.sponsorship The authors wish to express their gratitude to the Spanish Ministry of Economy, Industry and Competitiveness for the funding provided through Project BIA 2014-59036-R, and also to LIC-Levantina Ingenieria y Construccion and the Grupo Mapei for their invaluable assistance. The first author (Elisa Bertolesi) would like to thank the Universitat Politecnica de Valencia for funding received for her postdoctoral grant (PAID-10-17). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Engineering Structures es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Textile Reinforced Mortar (TRM) es_ES
dc.subject Timbrel masonry cross vaults es_ES
dc.subject Settlement-induced damages es_ES
dc.subject Masonry strengthening es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.engstruct.2020.110978 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-17/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2014-59036-R/ES/SISTEMAS INTELIGENTES PARA LA MONITORIZACION Y EVALUACION DE EDIFICIOS DE OBRA DE FABRICA TRAS SER SOMETIDOS A ACCIONES EXTRAORDINARIAS: RIESGOS GEOTECNICOS, FUEGO, IMPACTOS,/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Bertolesi, E.; Torres Górriz, B.; Adam, JM.; Calderón García, PA.; Moragues, JJ. (2020). Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults. Engineering Structures. 220:1-15. https://doi.org/10.1016/j.engstruct.2020.110978 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.engstruct.2020.110978 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 220 es_ES
dc.relation.pasarela S\426846 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Torres, B., Bertolesi, E., Moragues, J. J., Calderón, P. A., & Adam, J. M. (2019). Experimental investigation of a full-scale timbrel masonry cross vault subjected to vertical settlement. Construction and Building Materials, 221, 421-432. doi:10.1016/j.conbuildmat.2019.06.015 es_ES
dc.description.references Torres, B., Bertolesi, E., Calderón, P. A., Moragues, J. J., & Adam, J. M. (2019). A full-scale timbrel cross vault subjected to vertical cyclical displacements in one of its supports. Engineering Structures, 183, 791-804. doi:10.1016/j.engstruct.2019.01.054 es_ES
dc.description.references Kouris, L. A. S., & Triantafillou, T. C. (2018). State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Construction and Building Materials, 188, 1221-1233. doi:10.1016/j.conbuildmat.2018.08.039 es_ES
dc.description.references Del Zoppo, M., Di Ludovico, M., Balsamo, A., & Prota, A. (2019). In-plane shear capacity of tuff masonry walls with traditional and innovative Composite Reinforced Mortars (CRM). Construction and Building Materials, 210, 289-300. doi:10.1016/j.conbuildmat.2019.03.133 es_ES
dc.description.references Carozzi, F. G., Bellini, A., D’Antino, T., de Felice, G., Focacci, F., Hojdys, Ł., … Poggi, C. (2017). Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Composites Part B: Engineering, 128, 100-119. doi:10.1016/j.compositesb.2017.06.018 es_ES
dc.description.references Leone, M., Aiello, M. A., Balsamo, A., Carozzi, F. G., Ceroni, F., Corradi, M., … Saenger, D. (2017). Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate. Composites Part B: Engineering, 127, 196-214. doi:10.1016/j.compositesb.2017.06.028 es_ES
dc.description.references Caggegi, C., Carozzi, F. G., De Santis, S., Fabbrocino, F., Focacci, F., Hojdys, Ł., … Zuccarino, L. (2017). Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Composites Part B: Engineering, 127, 175-195. doi:10.1016/j.compositesb.2017.05.048 es_ES
dc.description.references Caggegi, C., Lanoye, E., Djama, K., Bassil, A., & Gabor, A. (2017). Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios. Composites Part B: Engineering, 130, 90-102. doi:10.1016/j.compositesb.2017.07.027 es_ES
dc.description.references Ascione, L., de Felice, G., & De Santis, S. (2015). A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems. Composites Part B: Engineering, 78, 497-506. doi:10.1016/j.compositesb.2015.03.079 es_ES
dc.description.references Bertolesi, E., Carozzi, F. G., Milani, G., & Poggi, C. (2014). Numerical modeling of Fabric Reinforce Cementitious Matrix composites (FRCM) in tension. Construction and Building Materials, 70, 531-548. doi:10.1016/j.conbuildmat.2014.08.006 es_ES
dc.description.references Sneed, L. H., D’Antino, T., Carloni, C., & Pellegrino, C. (2015). A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests. Cement and Concrete Composites, 64, 37-48. doi:10.1016/j.cemconcomp.2015.07.007 es_ES
dc.description.references Wang, X., Lam, C. C., & Iu, V. P. (2019). Comparison of different types of TRM composites for strengthening masonry panels. Construction and Building Materials, 219, 184-194. doi:10.1016/j.conbuildmat.2019.05.179 es_ES
dc.description.references Parisi, F., Iovinella, I., Balsamo, A., Augenti, N., & Prota, A. (2013). In-plane behaviour of tuff masonry strengthened with inorganic matrix–grid composites. Composites Part B: Engineering, 45(1), 1657-1666. doi:10.1016/j.compositesb.2012.09.068 es_ES
dc.description.references Faella, C., Martinelli, E., Nigro, E., & Paciello, S. (2010). Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign. Construction and Building Materials, 24(1), 84-93. doi:10.1016/j.conbuildmat.2009.08.019 es_ES
dc.description.references Augenti, N., Parisi, F., Prota, A., & Manfredi, G. (2011). In-Plane Lateral Response of a Full-Scale Masonry Subassemblage with and without an Inorganic Matrix-Grid Strengthening System. Journal of Composites for Construction, 15(4), 578-590. doi:10.1061/(asce)cc.1943-5614.0000193 es_ES
dc.description.references Garmendia, L., Larrinaga, P., San-Mateos, R., & San-José, J. T. (2015). Strengthening masonry vaults with organic and inorganic composites: An experimental approach. Materials & Design, 85, 102-114. doi:10.1016/j.matdes.2015.06.150 es_ES
dc.description.references Ismail, N., & Ingham, J. M. (2016). In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Engineering Structures, 118, 167-177. doi:10.1016/j.engstruct.2016.03.041 es_ES
dc.description.references Kariou, F. A., Triantafyllou, S. P., Bournas, D. A., & Koutas, L. N. (2018). Out-of-plane response of masonry walls strengthened using textile-mortar system. Construction and Building Materials, 165, 769-781. doi:10.1016/j.conbuildmat.2018.01.026 es_ES
dc.description.references D’Ambra, C., Lignola, G. P., Prota, A., Sacco, E., & Fabbrocino, F. (2018). Experimental performance of FRCM retrofit on out-of-plane behaviour of clay brick walls. Composites Part B: Engineering, 148, 198-206. doi:10.1016/j.compositesb.2018.04.062 es_ES
dc.description.references Kariou, F. A., Triantafyllou, S. P., & Bournas, D. A. (2019). TRM strengthening of masonry arches: An experimental investigation on the effect of strengthening layout and textile fibre material. Composites Part B: Engineering, 173, 106765. doi:10.1016/j.compositesb.2019.04.026 es_ES
dc.description.references Giamundo, V., Lignola, G. P., Maddaloni, G., Balsamo, A., Prota, A., & Manfredi, G. (2015). Experimental investigation of the seismic performances of IMG reinforcement on curved masonry elements. Composites Part B: Engineering, 70, 53-63. doi:10.1016/j.compositesb.2014.10.039 es_ES
dc.description.references Garmendia, L., San-José, J. T., García, D., & Larrinaga, P. (2011). Rehabilitation of masonry arches with compatible advanced composite material. Construction and Building Materials, 25(12), 4374-4385. doi:10.1016/j.conbuildmat.2011.03.065 es_ES
dc.description.references Alecci, V., Misseri, G., Rovero, L., Stipo, G., De Stefano, M., Feo, L., & Luciano, R. (2016). Experimental investigation on masonry arches strengthened with PBO-FRCM composite. Composites Part B: Engineering, 100, 228-239. doi:10.1016/j.compositesb.2016.05.063 es_ES
dc.description.references Bertolesi, E., Adam, J. M., Rinaudo, P., & Calderón, P. A. (2019). Research and practice on masonry cross vaults – A review. Engineering Structures, 180, 67-88. doi:10.1016/j.engstruct.2018.10.085 es_ES
dc.description.references Angelillo, M. (2015). Static analysis of a Guastavino helical stair as a layered masonry shell. Composite Structures, 119, 298-304. doi:10.1016/j.compstruct.2014.09.007 es_ES
dc.description.references Maddaloni, G., Di Ludovico, M., Balsamo, A., Maddaloni, G., & Prota, A. (2018). Dynamic assessment of innovative retrofit techniques for masonry buildings. Composites Part B: Engineering, 147, 147-161. doi:10.1016/j.compositesb.2018.04.038 es_ES
dc.description.references Parisi, F., & Augenti, N. (2013). Earthquake damages to cultural heritage constructions and simplified assessment of artworks. Engineering Failure Analysis, 34, 735-760. doi:10.1016/j.engfailanal.2013.01.005 es_ES
dc.description.references Augenti, N., & Parisi, F. (2010). Learning from Construction Failures due to the 2009 L’Aquila, Italy, Earthquake. Journal of Performance of Constructed Facilities, 24(6), 536-555. doi:10.1061/(asce)cf.1943-5509.0000122 es_ES
dc.description.references D’Altri, A. M., Castellazzi, G., de Miranda, S., & Tralli, A. (2017). Seismic-induced damage in historical masonry vaults: A case-study in the 2012 Emilia earthquake-stricken area. Journal of Building Engineering, 13, 224-243. doi:10.1016/j.jobe.2017.08.005 es_ES
dc.description.references Croci, G. (1998). The Basilica of St. Francis of Assisi after the September 1997 Earthquake. Structural Engineering International, 8(1), 56-58. doi:10.2749/101686698780489667 es_ES
dc.description.references Sáez Riquelme B, Iglesias Salón Valencianas S XVIII. Levantamiento gráfico, análisis geométrico y constructivo, patología común. (Ph.D thesis). Departamento de Sistemas Industriales y Diseño. Universitat Jaume I, Castellón (Spain), 2013. n.d. es_ES
dc.description.references https://www.mapei.com/it/en/products-and-solutions/products/detail/mapegrid-g-220. es_ES
dc.description.references https://www.mapei.com/it/en/products-and-solutions/products/detail/planitop-hdm-restauro. es_ES
dc.description.references Rotunno, T., Fagone, M., Bertolesi, E., Grande, E., & Milani, G. (2019). Curved masonry pillars reinforced with anchored CFRP sheets: An experimental analysis. Composites Part B: Engineering, 174, 107008. doi:10.1016/j.compositesb.2019.107008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem