Mostrar el registro sencillo del ítem
dc.contributor.author | Bertolesi, Elisa | es_ES |
dc.contributor.author | Torres Górriz, Benjamín | es_ES |
dc.contributor.author | Adam, Jose M | es_ES |
dc.contributor.author | Calderón García, Pedro Antonio | es_ES |
dc.contributor.author | Moragues, Juan J | es_ES |
dc.date.accessioned | 2021-02-19T04:34:20Z | |
dc.date.available | 2021-02-19T04:34:20Z | |
dc.date.issued | 2020-10-01 | es_ES |
dc.identifier.issn | 0141-0296 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161865 | |
dc.description.abstract | [EN] This paper presents the experimental results obtained from tests on two masonry vaults reinforced by Textile Reinforced Mortar (TRM) materials subjected to monotonic and cyclic vertical settlements in one of their sup-ports. Two full-scale square masonry timbrel vaults were built in one of ICITECH's laboratories at the Universitat Politecnica de Valencia (Valencia, Spain) using the traditional Catalan layered-construction technique, with various layers of clay tiles arranged in two perpendicular masonry textures joined by lime and cement mortar joints. Due to their peculiar geometric and mechanical features, i.e. their high slenderness ratio, low tensile strength and high material heterogeneity, these structures are especially prone to damage from high-risk events such as soil settlement or seismic excitation. To evaluate their response to vertical support displacements, both vaults were pre-damaged by either vertical monotonic or cyclic settlements. They were then strengthened by a radial TRM strengthening configuration and re-tested until failure. A complex network of traditional and optical sensors was used to monitor displacements, deformation and the development of the cracking mechanism under both settlement conditions. The results obtained show that TRM materials can be used to effectively repair severely damaged masonry timbrel vaults, helping to partially restore the initial elastic stiffness, as well as doubling the vaults' elastic phase and ultimate displacements. In addition, TRM materials did not alter the stiffness degradation trend, although they had a strong effect on peak reaction degradation and failure modes. This investigation represents a valuable and unique source of information about the efficacy of TRM materials to repair full-scale pre-damaged masonry timbrel vaults. | es_ES |
dc.description.sponsorship | The authors wish to express their gratitude to the Spanish Ministry of Economy, Industry and Competitiveness for the funding provided through Project BIA 2014-59036-R, and also to LIC-Levantina Ingenieria y Construccion and the Grupo Mapei for their invaluable assistance. The first author (Elisa Bertolesi) would like to thank the Universitat Politecnica de Valencia for funding received for her postdoctoral grant (PAID-10-17). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Textile Reinforced Mortar (TRM) | es_ES |
dc.subject | Timbrel masonry cross vaults | es_ES |
dc.subject | Settlement-induced damages | es_ES |
dc.subject | Masonry strengthening | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engstruct.2020.110978 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2014-59036-R/ES/SISTEMAS INTELIGENTES PARA LA MONITORIZACION Y EVALUACION DE EDIFICIOS DE OBRA DE FABRICA TRAS SER SOMETIDOS A ACCIONES EXTRAORDINARIAS: RIESGOS GEOTECNICOS, FUEGO, IMPACTOS,/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Bertolesi, E.; Torres Górriz, B.; Adam, JM.; Calderón García, PA.; Moragues, JJ. (2020). Effectiveness of Textile Reinforced Mortar (TRM) materials for the repair of full-scale timbrel masonry cross vaults. Engineering Structures. 220:1-15. https://doi.org/10.1016/j.engstruct.2020.110978 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engstruct.2020.110978 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 220 | es_ES |
dc.relation.pasarela | S\426846 | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Torres, B., Bertolesi, E., Moragues, J. J., Calderón, P. A., & Adam, J. M. (2019). Experimental investigation of a full-scale timbrel masonry cross vault subjected to vertical settlement. Construction and Building Materials, 221, 421-432. doi:10.1016/j.conbuildmat.2019.06.015 | es_ES |
dc.description.references | Torres, B., Bertolesi, E., Calderón, P. A., Moragues, J. J., & Adam, J. M. (2019). A full-scale timbrel cross vault subjected to vertical cyclical displacements in one of its supports. Engineering Structures, 183, 791-804. doi:10.1016/j.engstruct.2019.01.054 | es_ES |
dc.description.references | Kouris, L. A. S., & Triantafillou, T. C. (2018). State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Construction and Building Materials, 188, 1221-1233. doi:10.1016/j.conbuildmat.2018.08.039 | es_ES |
dc.description.references | Del Zoppo, M., Di Ludovico, M., Balsamo, A., & Prota, A. (2019). In-plane shear capacity of tuff masonry walls with traditional and innovative Composite Reinforced Mortars (CRM). Construction and Building Materials, 210, 289-300. doi:10.1016/j.conbuildmat.2019.03.133 | es_ES |
dc.description.references | Carozzi, F. G., Bellini, A., D’Antino, T., de Felice, G., Focacci, F., Hojdys, Ł., … Poggi, C. (2017). Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Composites Part B: Engineering, 128, 100-119. doi:10.1016/j.compositesb.2017.06.018 | es_ES |
dc.description.references | Leone, M., Aiello, M. A., Balsamo, A., Carozzi, F. G., Ceroni, F., Corradi, M., … Saenger, D. (2017). Glass fabric reinforced cementitious matrix: Tensile properties and bond performance on masonry substrate. Composites Part B: Engineering, 127, 196-214. doi:10.1016/j.compositesb.2017.06.028 | es_ES |
dc.description.references | Caggegi, C., Carozzi, F. G., De Santis, S., Fabbrocino, F., Focacci, F., Hojdys, Ł., … Zuccarino, L. (2017). Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures. Composites Part B: Engineering, 127, 175-195. doi:10.1016/j.compositesb.2017.05.048 | es_ES |
dc.description.references | Caggegi, C., Lanoye, E., Djama, K., Bassil, A., & Gabor, A. (2017). Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios. Composites Part B: Engineering, 130, 90-102. doi:10.1016/j.compositesb.2017.07.027 | es_ES |
dc.description.references | Ascione, L., de Felice, G., & De Santis, S. (2015). A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems. Composites Part B: Engineering, 78, 497-506. doi:10.1016/j.compositesb.2015.03.079 | es_ES |
dc.description.references | Bertolesi, E., Carozzi, F. G., Milani, G., & Poggi, C. (2014). Numerical modeling of Fabric Reinforce Cementitious Matrix composites (FRCM) in tension. Construction and Building Materials, 70, 531-548. doi:10.1016/j.conbuildmat.2014.08.006 | es_ES |
dc.description.references | Sneed, L. H., D’Antino, T., Carloni, C., & Pellegrino, C. (2015). A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests. Cement and Concrete Composites, 64, 37-48. doi:10.1016/j.cemconcomp.2015.07.007 | es_ES |
dc.description.references | Wang, X., Lam, C. C., & Iu, V. P. (2019). Comparison of different types of TRM composites for strengthening masonry panels. Construction and Building Materials, 219, 184-194. doi:10.1016/j.conbuildmat.2019.05.179 | es_ES |
dc.description.references | Parisi, F., Iovinella, I., Balsamo, A., Augenti, N., & Prota, A. (2013). In-plane behaviour of tuff masonry strengthened with inorganic matrix–grid composites. Composites Part B: Engineering, 45(1), 1657-1666. doi:10.1016/j.compositesb.2012.09.068 | es_ES |
dc.description.references | Faella, C., Martinelli, E., Nigro, E., & Paciello, S. (2010). Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign. Construction and Building Materials, 24(1), 84-93. doi:10.1016/j.conbuildmat.2009.08.019 | es_ES |
dc.description.references | Augenti, N., Parisi, F., Prota, A., & Manfredi, G. (2011). In-Plane Lateral Response of a Full-Scale Masonry Subassemblage with and without an Inorganic Matrix-Grid Strengthening System. Journal of Composites for Construction, 15(4), 578-590. doi:10.1061/(asce)cc.1943-5614.0000193 | es_ES |
dc.description.references | Garmendia, L., Larrinaga, P., San-Mateos, R., & San-José, J. T. (2015). Strengthening masonry vaults with organic and inorganic composites: An experimental approach. Materials & Design, 85, 102-114. doi:10.1016/j.matdes.2015.06.150 | es_ES |
dc.description.references | Ismail, N., & Ingham, J. M. (2016). In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Engineering Structures, 118, 167-177. doi:10.1016/j.engstruct.2016.03.041 | es_ES |
dc.description.references | Kariou, F. A., Triantafyllou, S. P., Bournas, D. A., & Koutas, L. N. (2018). Out-of-plane response of masonry walls strengthened using textile-mortar system. Construction and Building Materials, 165, 769-781. doi:10.1016/j.conbuildmat.2018.01.026 | es_ES |
dc.description.references | D’Ambra, C., Lignola, G. P., Prota, A., Sacco, E., & Fabbrocino, F. (2018). Experimental performance of FRCM retrofit on out-of-plane behaviour of clay brick walls. Composites Part B: Engineering, 148, 198-206. doi:10.1016/j.compositesb.2018.04.062 | es_ES |
dc.description.references | Kariou, F. A., Triantafyllou, S. P., & Bournas, D. A. (2019). TRM strengthening of masonry arches: An experimental investigation on the effect of strengthening layout and textile fibre material. Composites Part B: Engineering, 173, 106765. doi:10.1016/j.compositesb.2019.04.026 | es_ES |
dc.description.references | Giamundo, V., Lignola, G. P., Maddaloni, G., Balsamo, A., Prota, A., & Manfredi, G. (2015). Experimental investigation of the seismic performances of IMG reinforcement on curved masonry elements. Composites Part B: Engineering, 70, 53-63. doi:10.1016/j.compositesb.2014.10.039 | es_ES |
dc.description.references | Garmendia, L., San-José, J. T., García, D., & Larrinaga, P. (2011). Rehabilitation of masonry arches with compatible advanced composite material. Construction and Building Materials, 25(12), 4374-4385. doi:10.1016/j.conbuildmat.2011.03.065 | es_ES |
dc.description.references | Alecci, V., Misseri, G., Rovero, L., Stipo, G., De Stefano, M., Feo, L., & Luciano, R. (2016). Experimental investigation on masonry arches strengthened with PBO-FRCM composite. Composites Part B: Engineering, 100, 228-239. doi:10.1016/j.compositesb.2016.05.063 | es_ES |
dc.description.references | Bertolesi, E., Adam, J. M., Rinaudo, P., & Calderón, P. A. (2019). Research and practice on masonry cross vaults – A review. Engineering Structures, 180, 67-88. doi:10.1016/j.engstruct.2018.10.085 | es_ES |
dc.description.references | Angelillo, M. (2015). Static analysis of a Guastavino helical stair as a layered masonry shell. Composite Structures, 119, 298-304. doi:10.1016/j.compstruct.2014.09.007 | es_ES |
dc.description.references | Maddaloni, G., Di Ludovico, M., Balsamo, A., Maddaloni, G., & Prota, A. (2018). Dynamic assessment of innovative retrofit techniques for masonry buildings. Composites Part B: Engineering, 147, 147-161. doi:10.1016/j.compositesb.2018.04.038 | es_ES |
dc.description.references | Parisi, F., & Augenti, N. (2013). Earthquake damages to cultural heritage constructions and simplified assessment of artworks. Engineering Failure Analysis, 34, 735-760. doi:10.1016/j.engfailanal.2013.01.005 | es_ES |
dc.description.references | Augenti, N., & Parisi, F. (2010). Learning from Construction Failures due to the 2009 L’Aquila, Italy, Earthquake. Journal of Performance of Constructed Facilities, 24(6), 536-555. doi:10.1061/(asce)cf.1943-5509.0000122 | es_ES |
dc.description.references | D’Altri, A. M., Castellazzi, G., de Miranda, S., & Tralli, A. (2017). Seismic-induced damage in historical masonry vaults: A case-study in the 2012 Emilia earthquake-stricken area. Journal of Building Engineering, 13, 224-243. doi:10.1016/j.jobe.2017.08.005 | es_ES |
dc.description.references | Croci, G. (1998). The Basilica of St. Francis of Assisi after the September 1997 Earthquake. Structural Engineering International, 8(1), 56-58. doi:10.2749/101686698780489667 | es_ES |
dc.description.references | Sáez Riquelme B, Iglesias Salón Valencianas S XVIII. Levantamiento gráfico, análisis geométrico y constructivo, patología común. (Ph.D thesis). Departamento de Sistemas Industriales y Diseño. Universitat Jaume I, Castellón (Spain), 2013. n.d. | es_ES |
dc.description.references | https://www.mapei.com/it/en/products-and-solutions/products/detail/mapegrid-g-220. | es_ES |
dc.description.references | https://www.mapei.com/it/en/products-and-solutions/products/detail/planitop-hdm-restauro. | es_ES |
dc.description.references | Rotunno, T., Fagone, M., Bertolesi, E., Grande, E., & Milani, G. (2019). Curved masonry pillars reinforced with anchored CFRP sheets: An experimental analysis. Composites Part B: Engineering, 174, 107008. doi:10.1016/j.compositesb.2019.107008 | es_ES |