- -

Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring

Show full item record

Martínez-Gimeno, MA.; Jiménez Bello, MA.; Lidón, A.; Manzano Juarez, J.; Badal, E.; Pérez-Pérez, JG.; Bonet, L.... (2020). Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring. Agricultural Water Management. 235:1-9. https://doi.org/10.1016/j.agwat.2020.106151

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161869

Files in this item

Item Metadata

Title: Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring
Author: Martínez-Gimeno, M. A. Jiménez Bello, Miguel Angel Lidón, Antonio Manzano Juarez, Juan Badal, E. Pérez-Pérez, J. G. Bonet, L. Intrigliolo, D. S. Esteban, A.
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Issued date:
Abstract:
[EN] The accurate estimation of plant water needs is the first step for achieving high crop water productivity. The main objective of the work was to develop an irrigation scheduling procedure for mandarin orchards under ...[+]
Subjects: Critical soil water content , Plant water status , Irrigation scheduling , Water savings
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Agricultural Water Management. (issn: 0378-3774 )
DOI: 10.1016/j.agwat.2020.106151
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.agwat.2020.106151
Project ID:
info:eu-repo/grantAgreement/EC/FP7/619061/EU/WATER AND ENERGY ADVANCED MANAGEMENT FOR IRRIGATION/
info:eu-repo/grantAgreement/MINECO//IPT-2012-0950-310000/ES/Desarrollo de un sistema experto para la programación automática del riego basado en aspectos agronómicos. (EASYRIEGO)/
info:eu-repo/grantAgreement/MINECO//IPT-2012-0480-310000/ES/Desarrollo y validación de un sistema de riego subterráneo inteligente/
info:eu-repo/grantAgreement/MINECO//RTC-2016-4972-2/
Thanks:
This experiment was funded by European project WEAM4i Water & Energy Advanced Management for Irrigation, grant agreement 619061 and FEDER-MINECO projects EASYRIEGO IPT-2012-0950-310000, RISUB IPT-2012-0480-310000 and ...[+]
Type: Artículo

References

ABOUATALLAH, A., SALGHI, R., FADL, A. E., HAMMOUTI, B., ZARROUK, A., ATRAOUI, A., & GHNIZAR, Y. (2012). Shading Nets Usefulness for Water Saving on Citrus Orchards under Different Irrigation Doses. Current World Environment, 7(1), 13-22. doi:10.12944/cwe.7.1.03

Alva, A. K., Paramasivam, S., Fares, A., Obreza, T. A., & Schumann, A. W. (2006). Nitrogen best management practice for citrus trees. Scientia Horticulturae, 109(3), 223-233. doi:10.1016/j.scienta.2006.04.011

Asada, K., Eguchi, S., Urakawa, R., Itahashi, S., Matsumaru, T., Nagasawa, T., … Katou, H. (2013). Modifying the LEACHM model for process-based prediction of nitrate leaching from cropped Andosols. Plant and Soil, 373(1-2), 609-625. doi:10.1007/s11104-013-1809-7 [+]
ABOUATALLAH, A., SALGHI, R., FADL, A. E., HAMMOUTI, B., ZARROUK, A., ATRAOUI, A., & GHNIZAR, Y. (2012). Shading Nets Usefulness for Water Saving on Citrus Orchards under Different Irrigation Doses. Current World Environment, 7(1), 13-22. doi:10.12944/cwe.7.1.03

Alva, A. K., Paramasivam, S., Fares, A., Obreza, T. A., & Schumann, A. W. (2006). Nitrogen best management practice for citrus trees. Scientia Horticulturae, 109(3), 223-233. doi:10.1016/j.scienta.2006.04.011

Asada, K., Eguchi, S., Urakawa, R., Itahashi, S., Matsumaru, T., Nagasawa, T., … Katou, H. (2013). Modifying the LEACHM model for process-based prediction of nitrate leaching from cropped Andosols. Plant and Soil, 373(1-2), 609-625. doi:10.1007/s11104-013-1809-7

Autovino, D., Rallo, G., & Provenzano, G. (2018). Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agricultural Water Management, 203, 225-235. doi:10.1016/j.agwat.2018.03.015

Ballester, C., Castel, J., Intrigliolo, D. S., & Castel, J. R. (2011). Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition. Agricultural Water Management, 98(6), 1027-1032. doi:10.1016/j.agwat.2011.01.011

Ballester, C., Castel, J., El-Mageed, T. A. A., Castel, J. R., & Intrigliolo, D. S. (2014). Long-term response of ‘Clementina de Nules’ citrus trees to summer regulated deficit irrigation. Agricultural Water Management, 138, 78-84. doi:10.1016/j.agwat.2014.03.003

Bell, J. P., Dean, T. J., & Hodnett, M. G. (1987). Soil moisture measurement by an improved capacitance technique, part II. Field techniques, evaluation and calibration. Journal of Hydrology, 93(1-2), 79-90. doi:10.1016/0022-1694(87)90195-8

CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001

Campbell, G. S., & Campbell, M. D. (1982). Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice. Advances in Irrigation, 25-42. doi:10.1016/b978-0-12-024301-3.50008-3

Childs, S. W., & Hanks, R. J. (1975). Model of Soil Salinity Effects on Crop Growth. Soil Science Society of America Journal, 39(4), 617-622. doi:10.2136/sssaj1975.03615995003900040016x

Confalonieri, R., & Bechini, L. (2004). A preliminary evaluation of the simulation model CropSyst for alfalfa. European Journal of Agronomy, 21(2), 223-237. doi:10.1016/j.eja.2003.08.003

Consoli, S., O’Connell, N., & Snyder, R. (2006). Measurement of Light Interception by Navel Orange Orchard Canopies: Case Study of Lindsay, California. Journal of Irrigation and Drainage Engineering, 132(1), 9-20. doi:10.1061/(asce)0733-9437(2006)132:1(9)

Deng, Z., Guan, H., Hutson, J., Forster, M. A., Wang, Y., & Simmons, C. T. (2017). A vegetation‐focused soil‐plant‐atmospheric continuum model to study hydrodynamic soil‐plant water relations. Water Resources Research, 53(6), 4965-4983. doi:10.1002/2017wr020467

Evett, S. R., & Parkin, G. W. (2005). Advances in Soil Water Content Sensing: The Continuing Maturation of Technology and Theory. Vadose Zone Journal, 4(4), 986-991. doi:10.2136/vzj2005.0099

Evett, S. R., Tolk, J. A., & Howell, T. A. (2006). Soil Profile Water Content Determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and Precision. Vadose Zone Journal, 5(3), 894-907. doi:10.2136/vzj2005.0149

Fares, A., & Polyakov, V. (2006). Advances in Crop Water Management Using Capacitive Water Sensors. Advances in Agronomy, 43-77. doi:10.1016/s0065-2113(06)90002-9

Fereres, E., & Soriano, M. A. (2006). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147-159. doi:10.1093/jxb/erl165

García-Tejero, I., Durán-Zuazo, V. H., Muriel-Fernández, J. L., Martínez-García, G., & Jiménez-Bocanegra, J. A. (2011). Benefits of low-frequency irrigation in citrus orchards. Agronomy for Sustainable Development, 31(4), 779-791. doi:10.1007/s13593-011-0025-1

Girona, J., Mata, M., Fereres, E., Goldhamer, D. ., & Cohen, M. (2002). Evapotranspiration and soil water dynamics of peach trees under water deficits. Agricultural Water Management, 54(2), 107-122. doi:10.1016/s0378-3774(01)00149-4

Hoekstra, P., & Delaney, A. (1974). Dielectric properties of soils at UHF and microwave frequencies. Journal of Geophysical Research, 79(11), 1699-1708. doi:10.1029/jb079i011p01699

HUTSON, J. L., & CASS, A. (1987). A retentivity function for use in soil-water simulation models. Journal of Soil Science, 38(1), 105-113. doi:10.1111/j.1365-2389.1987.tb02128.x

Kramer, P. J. (1942). SPECIES DIFFERENCES WITH RESPECT TO WATER ABSORPTION AT LOW SOIL TEMPERATURES. American Journal of Botany, 29(10), 828-832. doi:10.1002/j.1537-2197.1942.tb10287.x

Lidón, A., Ramos, C., & Rodrigo, A. (1999). Comparison of drainage estimation methods in irrigated citrus orchards. Irrigation Science, 19(1), 25-36. doi:10.1007/s002710050068

Lidón, A., Ramos, C., Ginestar, D., & Contreras, W. (2013). Assessment of LEACHN and a simple compartmental model to simulate nitrogen dynamics in citrus orchards. Agricultural Water Management, 121, 42-53. doi:10.1016/j.agwat.2013.01.008

Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7(1-2), 51-73. doi:10.1016/0169-7722(91)90038-3

Martínez-Gimeno, M. A., Bonet, L., Provenzano, G., Badal, E., Intrigliolo, D. S., & Ballester, C. (2018). Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation. Agricultural Water Management, 206, 209-216. doi:10.1016/j.agwat.2018.05.011

Milano, M., Ruelland, D., Fernandez, S., Dezetter, A., Fabre, J., Servat, E., … Thivet, G. (2013). Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrological Sciences Journal, 58(3), 498-518. doi:10.1080/02626667.2013.774458

Minacapilli, M., Iovino, M., & D’Urso, G. (2008). A distributed agro-hydrological model for irrigation water demand assessment. Agricultural Water Management, 95(2), 123-132. doi:10.1016/j.agwat.2007.09.008

Moriana, A., Pérez-López, D., Prieto, M. H., Ramírez-Santa-Pau, M., & Pérez-Rodriguez, J. M. (2012). Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agricultural Water Management, 112, 43-54. doi:10.1016/j.agwat.2012.06.003

Nasri, N., Chebil, M., Guellouz, L., Bouhlila, R., Maslouhi, A., & Ibnoussina, M. (2014). Modelling nonpoint source pollution by nitrate of soil in the Mateur plain, northeast of Tunisia. Arabian Journal of Geosciences, 8(2), 1057-1075. doi:10.1007/s12517-013-1215-8

Nicolás, E., Alarcón, J., Mounzer, O., Pedrero, F., Nortes, P., Alcobendas, R., … Maestre-Valero, J. (2016). Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water. Agricultural Water Management, 166, 1-8. doi:10.1016/j.agwat.2015.11.017

Nimah, M. N., & Hanks, R. J. (1973). Model for Estimating Soil Water, Plant, and Atmospheric Interrelations: I. Description and Sensitivity. Soil Science Society of America Journal, 37(4), 522-527. doi:10.2136/sssaj1973.03615995003700040018x

Paraskevas, C., Georgiou, P., Ilias, A., Panoras, A., & Babajimopoulos, C. (2012). Calibration equations for two capacitance water content probes. International Agrophysics, 26(3), 285-293. doi:10.2478/v10247-012-0041-7

Pérez-Pérez, J. G., Romero, P., Navarro, J. M., & Botía, P. (2008). Response of sweet orange cv ‘Lane late’ to deficit irrigation in two rootstocks. I: water relations, leaf gas exchange and vegetative growth. Irrigation Science, 26(5), 415-425. doi:10.1007/s00271-008-0106-3

Pérez-Pérez, J. G., García, J., Robles, J. M., & Botía, P. (2010). Economic analysis of navel orange cv. ‘Lane late’ grown on two different drought-tolerant rootstocks under deficit irrigation in South-eastern Spain. Agricultural Water Management, 97(1), 157-164. doi:10.1016/j.agwat.2009.08.023

Pérez-Pérez, J. G., Robles, J. M., & Botía, P. (2014). Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions. Agricultural Water Management, 133, 44-54. doi:10.1016/j.agwat.2013.11.002

Provenzano, G., Rallo, G., & Ghazouani, H. (2016). Assessing Field and Laboratory Calibration Protocols for the Diviner 2000 Probe in a Range of Soils with Different Textures. Journal of Irrigation and Drainage Engineering, 142(2), 04015040. doi:10.1061/(asce)ir.1943-4774.0000950

Quiñones, A., Martínez-Alcántara, B., & Legaz, F. (2007). Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees. Agriculture, Ecosystems & Environment, 122(3), 399-409. doi:10.1016/j.agee.2007.02.004

Rallo, G., Agnese, C., Minacapilli, M., & Provenzano, G. (2012). Comparison of SWAP and FAO Agro-Hydrological Models to Schedule Irrigation of Wine Grapes. Journal of Irrigation and Drainage Engineering, 138(7), 581-591. doi:10.1061/(asce)ir.1943-4774.0000435

Ramos, C., & Carbonell, E. A. (1991). Nitrate leaching and soil moisture prediction with the LEACHM model. Fertilizer Research, 27(2-3), 171-180. doi:10.1007/bf01051125

Richards, L. A. (1931). CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS. Physics, 1(5), 318-333. doi:10.1063/1.1745010

RICHARDS, L. A. (1948). POROUS PLATE APPARATUS FOR MEASURING MOISTURE RETENTION AND TRANSMISSION BY SOIL. Soil Science, 66(2), 105-110. doi:10.1097/00010694-194808000-00003

Ruiz-Sanchez, M. C., Domingo, R., & Castel, J. R. (2010). Review. Deficit irrigation in fruit trees and vines in Spain. Spanish Journal of Agricultural Research, 8(S2), 5. doi:10.5424/sjar/201008s2-1343

Running, S. W., & Reid, C. P. (1980). Soil Temperature Influences on Root Resistance of Pinus contorta Seedlings. Plant Physiology, 65(4), 635-640. doi:10.1104/pp.65.4.635

Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (1998). Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil Science Society of America Journal, 62(4), 847-855. doi:10.2136/sssaj1998.03615995006200040001x

Sevostianova, E., Deb, S., Serena, M., VanLeeuwen, D., & Leinauer, B. (2015). Accuracy of Two Electromagnetic Soil Water Content Sensors in Saline Soils. Soil Science Society of America Journal, 79(6), 1752-1759. doi:10.2136/sssaj2015.07.0271

Spinelli, G. M., Shackel, K. A., & Gilbert, M. E. (2017). A model exploring whether the coupled effects of plant water supply and demand affect the interpretation of water potentials and irrigation management. Agricultural Water Management, 192, 271-280. doi:10.1016/j.agwat.2017.07.019

Syvertsen, J. P., Goni, C., & Otero, A. (2003). Fruit load and canopy shading affect leaf characteristics and net gas exchange of «Spring» navel orange trees. Tree Physiology, 23(13), 899-906. doi:10.1093/treephys/23.13.899

Thomas, A. M. (1966). In situmeasurement of moisture in soil and similar substances by `fringe’ capacitance. Journal of Scientific Instruments, 43(1), 21-27. doi:10.1088/0950-7671/43/1/306

Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58(1-3), 339-366. doi:10.1007/bf02180062

Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. doi:10.2136/sssaj1980.03615995004400050002x

WALKLEY, A., & BLACK, I. A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003

Wallis, K. J., Candela, L., Mateos, R. M., & Tamoh, K. (2011). Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport. Agricultural Water Management, 98(10), 1629-1640. doi:10.1016/j.agwat.2011.06.001

Yonemoto, Y., Matsumoto, K., Furukawa, T., Asakawa, M., Okuda, H., & Takahara, T. (2004). Effects of rootstock and crop load on sap flow rate in branches of ‘Shirakawa Satsuma’ mandarin (Citrus unshiu Marc.). Scientia Horticulturae, 102(3), 295-300. doi:10.1016/j.scienta.2004.02.005

Zhang, K., Greenwood, D. J., Spracklen, W. P., Rahn, C. R., Hammond, J. P., White, P. J., & Burns, I. G. (2010). A universal agro-hydrological model for water and nitrogen cycles in the soil–crop system SMCR_N: Critical update and further validation. Agricultural Water Management, 97(10), 1411-1422. doi:10.1016/j.agwat.2010.03.007

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record