- -

Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Gimeno, M. A. es_ES
dc.contributor.author Jiménez Bello, Miguel Angel es_ES
dc.contributor.author Lidón, Antonio es_ES
dc.contributor.author Manzano Juarez, Juan es_ES
dc.contributor.author Badal, E. es_ES
dc.contributor.author Pérez-Pérez, J. G. es_ES
dc.contributor.author Bonet, L. es_ES
dc.contributor.author Intrigliolo, D. S. es_ES
dc.contributor.author Esteban, A. es_ES
dc.date.accessioned 2021-02-19T04:34:32Z
dc.date.available 2021-02-19T04:34:32Z
dc.date.issued 2020-05-31 es_ES
dc.identifier.issn 0378-3774 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161869
dc.description.abstract [EN] The accurate estimation of plant water needs is the first step for achieving high crop water productivity. The main objective of the work was to develop an irrigation scheduling procedure for mandarin orchards under Mediterranean conditions based on replacing the amount of consumed water using reference values of soil moisture according to different phenological periods. The proposed methodology includes a definition part where the threshold values were established relating the trees' stem water potential and the volumetric soil water content measured with Frequency Domain Reflectometry probes. A second part includes the steps for standardizing measurements from capacitance probes by using the LEACHM hydrological simulation model to take into account the sensor-to-sensor variations. Finally, an extrapolation procedure based on soil water retention curves was used for adapting critical soil water content thresholds to different soil conditions. Field evaluations were made in a citrus orchard located in eastern Spain during two seasons. Standardize critical soil water contents were: i) 24 % vol. for post-harvest, bloom - fruit set and phase III of fruit growth; ii) 27 % vol. for phase I of fruit growth, and iii) 29 % vol. for phase II of fruit growth with average daily air vapour pressure deficit values ranging between 0.2 - 0.4; 0.9-1.1 and 1.1-1.3 kPa, respectively. When implemented in the orchard, the sensor-based strategy resulted in water saving of 26 % respect to a control treatment, irrigated using the standard FAO-56 approach, without significant differences in yield and increasing the crop water productivity by 33 %. In conclusion, we suggest that the determination and use of the critical soil water content is a useful tool for scheduling irrigation. The proposed standardization and extrapolation methodology allows the irrigation strategy to be applied to other mandarin orchards under similar climatic conditions. es_ES
dc.description.sponsorship This experiment was funded by European project WEAM4i Water & Energy Advanced Management for Irrigation, grant agreement 619061 and FEDER-MINECO projects EASYRIEGO IPT-2012-0950-310000, RISUB IPT-2012-0480-310000 and RIEGOTEL RTC-2016-4972-2. M.A. Martinez-Gimeno acknowledges the financial support received from the Spanish Ministry of Education, Culture and Sports (MECD) program Formacion Profesorado Universitario (FPU). Juan G. Perez-Perez also gratefully acknowledges the post-doctoral contract in the `Ramon y Cajal' program, supplied by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO). Authors would like to thank M. Jorda, C. Albert, F. Sanz and A. Yeves for the support on installation and maintenance of the equipment. Thanks also to Prof. G. Provenzano (University of Palermo) for his critical comments and suggestions. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Agricultural Water Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Critical soil water content es_ES
dc.subject Plant water status es_ES
dc.subject Irrigation scheduling es_ES
dc.subject Water savings es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.agwat.2020.106151 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/619061/EU/WATER AND ENERGY ADVANCED MANAGEMENT FOR IRRIGATION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IPT-2012-0950-310000/ES/Desarrollo de un sistema experto para la programación automática del riego basado en aspectos agronómicos. (EASYRIEGO)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IPT-2012-0480-310000/ES/Desarrollo y validación de un sistema de riego subterráneo inteligente/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTC-2016-4972-2/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Martínez-Gimeno, MA.; Jiménez Bello, MA.; Lidón, A.; Manzano Juarez, J.; Badal, E.; Pérez-Pérez, JG.; Bonet, L.... (2020). Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring. Agricultural Water Management. 235:1-9. https://doi.org/10.1016/j.agwat.2020.106151 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.agwat.2020.106151 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 235 es_ES
dc.relation.pasarela S\407567 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references ABOUATALLAH, A., SALGHI, R., FADL, A. E., HAMMOUTI, B., ZARROUK, A., ATRAOUI, A., & GHNIZAR, Y. (2012). Shading Nets Usefulness for Water Saving on Citrus Orchards under Different Irrigation Doses. Current World Environment, 7(1), 13-22. doi:10.12944/cwe.7.1.03 es_ES
dc.description.references Alva, A. K., Paramasivam, S., Fares, A., Obreza, T. A., & Schumann, A. W. (2006). Nitrogen best management practice for citrus trees. Scientia Horticulturae, 109(3), 223-233. doi:10.1016/j.scienta.2006.04.011 es_ES
dc.description.references Asada, K., Eguchi, S., Urakawa, R., Itahashi, S., Matsumaru, T., Nagasawa, T., … Katou, H. (2013). Modifying the LEACHM model for process-based prediction of nitrate leaching from cropped Andosols. Plant and Soil, 373(1-2), 609-625. doi:10.1007/s11104-013-1809-7 es_ES
dc.description.references Autovino, D., Rallo, G., & Provenzano, G. (2018). Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agricultural Water Management, 203, 225-235. doi:10.1016/j.agwat.2018.03.015 es_ES
dc.description.references Ballester, C., Castel, J., Intrigliolo, D. S., & Castel, J. R. (2011). Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition. Agricultural Water Management, 98(6), 1027-1032. doi:10.1016/j.agwat.2011.01.011 es_ES
dc.description.references Ballester, C., Castel, J., El-Mageed, T. A. A., Castel, J. R., & Intrigliolo, D. S. (2014). Long-term response of ‘Clementina de Nules’ citrus trees to summer regulated deficit irrigation. Agricultural Water Management, 138, 78-84. doi:10.1016/j.agwat.2014.03.003 es_ES
dc.description.references Bell, J. P., Dean, T. J., & Hodnett, M. G. (1987). Soil moisture measurement by an improved capacitance technique, part II. Field techniques, evaluation and calibration. Journal of Hydrology, 93(1-2), 79-90. doi:10.1016/0022-1694(87)90195-8 es_ES
dc.description.references CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001 es_ES
dc.description.references Campbell, G. S., & Campbell, M. D. (1982). Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice. Advances in Irrigation, 25-42. doi:10.1016/b978-0-12-024301-3.50008-3 es_ES
dc.description.references Childs, S. W., & Hanks, R. J. (1975). Model of Soil Salinity Effects on Crop Growth. Soil Science Society of America Journal, 39(4), 617-622. doi:10.2136/sssaj1975.03615995003900040016x es_ES
dc.description.references Confalonieri, R., & Bechini, L. (2004). A preliminary evaluation of the simulation model CropSyst for alfalfa. European Journal of Agronomy, 21(2), 223-237. doi:10.1016/j.eja.2003.08.003 es_ES
dc.description.references Consoli, S., O’Connell, N., & Snyder, R. (2006). Measurement of Light Interception by Navel Orange Orchard Canopies: Case Study of Lindsay, California. Journal of Irrigation and Drainage Engineering, 132(1), 9-20. doi:10.1061/(asce)0733-9437(2006)132:1(9) es_ES
dc.description.references Deng, Z., Guan, H., Hutson, J., Forster, M. A., Wang, Y., & Simmons, C. T. (2017). A vegetation‐focused soil‐plant‐atmospheric continuum model to study hydrodynamic soil‐plant water relations. Water Resources Research, 53(6), 4965-4983. doi:10.1002/2017wr020467 es_ES
dc.description.references Evett, S. R., & Parkin, G. W. (2005). Advances in Soil Water Content Sensing: The Continuing Maturation of Technology and Theory. Vadose Zone Journal, 4(4), 986-991. doi:10.2136/vzj2005.0099 es_ES
dc.description.references Evett, S. R., Tolk, J. A., & Howell, T. A. (2006). Soil Profile Water Content Determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and Precision. Vadose Zone Journal, 5(3), 894-907. doi:10.2136/vzj2005.0149 es_ES
dc.description.references Fares, A., & Polyakov, V. (2006). Advances in Crop Water Management Using Capacitive Water Sensors. Advances in Agronomy, 43-77. doi:10.1016/s0065-2113(06)90002-9 es_ES
dc.description.references Fereres, E., & Soriano, M. A. (2006). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147-159. doi:10.1093/jxb/erl165 es_ES
dc.description.references García-Tejero, I., Durán-Zuazo, V. H., Muriel-Fernández, J. L., Martínez-García, G., & Jiménez-Bocanegra, J. A. (2011). Benefits of low-frequency irrigation in citrus orchards. Agronomy for Sustainable Development, 31(4), 779-791. doi:10.1007/s13593-011-0025-1 es_ES
dc.description.references Girona, J., Mata, M., Fereres, E., Goldhamer, D. ., & Cohen, M. (2002). Evapotranspiration and soil water dynamics of peach trees under water deficits. Agricultural Water Management, 54(2), 107-122. doi:10.1016/s0378-3774(01)00149-4 es_ES
dc.description.references Hoekstra, P., & Delaney, A. (1974). Dielectric properties of soils at UHF and microwave frequencies. Journal of Geophysical Research, 79(11), 1699-1708. doi:10.1029/jb079i011p01699 es_ES
dc.description.references HUTSON, J. L., & CASS, A. (1987). A retentivity function for use in soil-water simulation models. Journal of Soil Science, 38(1), 105-113. doi:10.1111/j.1365-2389.1987.tb02128.x es_ES
dc.description.references Kramer, P. J. (1942). SPECIES DIFFERENCES WITH RESPECT TO WATER ABSORPTION AT LOW SOIL TEMPERATURES. American Journal of Botany, 29(10), 828-832. doi:10.1002/j.1537-2197.1942.tb10287.x es_ES
dc.description.references Lidón, A., Ramos, C., & Rodrigo, A. (1999). Comparison of drainage estimation methods in irrigated citrus orchards. Irrigation Science, 19(1), 25-36. doi:10.1007/s002710050068 es_ES
dc.description.references Lidón, A., Ramos, C., Ginestar, D., & Contreras, W. (2013). Assessment of LEACHN and a simple compartmental model to simulate nitrogen dynamics in citrus orchards. Agricultural Water Management, 121, 42-53. doi:10.1016/j.agwat.2013.01.008 es_ES
dc.description.references Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7(1-2), 51-73. doi:10.1016/0169-7722(91)90038-3 es_ES
dc.description.references Martínez-Gimeno, M. A., Bonet, L., Provenzano, G., Badal, E., Intrigliolo, D. S., & Ballester, C. (2018). Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation. Agricultural Water Management, 206, 209-216. doi:10.1016/j.agwat.2018.05.011 es_ES
dc.description.references Milano, M., Ruelland, D., Fernandez, S., Dezetter, A., Fabre, J., Servat, E., … Thivet, G. (2013). Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrological Sciences Journal, 58(3), 498-518. doi:10.1080/02626667.2013.774458 es_ES
dc.description.references Minacapilli, M., Iovino, M., & D’Urso, G. (2008). A distributed agro-hydrological model for irrigation water demand assessment. Agricultural Water Management, 95(2), 123-132. doi:10.1016/j.agwat.2007.09.008 es_ES
dc.description.references Moriana, A., Pérez-López, D., Prieto, M. H., Ramírez-Santa-Pau, M., & Pérez-Rodriguez, J. M. (2012). Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agricultural Water Management, 112, 43-54. doi:10.1016/j.agwat.2012.06.003 es_ES
dc.description.references Nasri, N., Chebil, M., Guellouz, L., Bouhlila, R., Maslouhi, A., & Ibnoussina, M. (2014). Modelling nonpoint source pollution by nitrate of soil in the Mateur plain, northeast of Tunisia. Arabian Journal of Geosciences, 8(2), 1057-1075. doi:10.1007/s12517-013-1215-8 es_ES
dc.description.references Nicolás, E., Alarcón, J., Mounzer, O., Pedrero, F., Nortes, P., Alcobendas, R., … Maestre-Valero, J. (2016). Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water. Agricultural Water Management, 166, 1-8. doi:10.1016/j.agwat.2015.11.017 es_ES
dc.description.references Nimah, M. N., & Hanks, R. J. (1973). Model for Estimating Soil Water, Plant, and Atmospheric Interrelations: I. Description and Sensitivity. Soil Science Society of America Journal, 37(4), 522-527. doi:10.2136/sssaj1973.03615995003700040018x es_ES
dc.description.references Paraskevas, C., Georgiou, P., Ilias, A., Panoras, A., & Babajimopoulos, C. (2012). Calibration equations for two capacitance water content probes. International Agrophysics, 26(3), 285-293. doi:10.2478/v10247-012-0041-7 es_ES
dc.description.references Pérez-Pérez, J. G., Romero, P., Navarro, J. M., & Botía, P. (2008). Response of sweet orange cv ‘Lane late’ to deficit irrigation in two rootstocks. I: water relations, leaf gas exchange and vegetative growth. Irrigation Science, 26(5), 415-425. doi:10.1007/s00271-008-0106-3 es_ES
dc.description.references Pérez-Pérez, J. G., García, J., Robles, J. M., & Botía, P. (2010). Economic analysis of navel orange cv. ‘Lane late’ grown on two different drought-tolerant rootstocks under deficit irrigation in South-eastern Spain. Agricultural Water Management, 97(1), 157-164. doi:10.1016/j.agwat.2009.08.023 es_ES
dc.description.references Pérez-Pérez, J. G., Robles, J. M., & Botía, P. (2014). Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions. Agricultural Water Management, 133, 44-54. doi:10.1016/j.agwat.2013.11.002 es_ES
dc.description.references Provenzano, G., Rallo, G., & Ghazouani, H. (2016). Assessing Field and Laboratory Calibration Protocols for the Diviner 2000 Probe in a Range of Soils with Different Textures. Journal of Irrigation and Drainage Engineering, 142(2), 04015040. doi:10.1061/(asce)ir.1943-4774.0000950 es_ES
dc.description.references Quiñones, A., Martínez-Alcántara, B., & Legaz, F. (2007). Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees. Agriculture, Ecosystems & Environment, 122(3), 399-409. doi:10.1016/j.agee.2007.02.004 es_ES
dc.description.references Rallo, G., Agnese, C., Minacapilli, M., & Provenzano, G. (2012). Comparison of SWAP and FAO Agro-Hydrological Models to Schedule Irrigation of Wine Grapes. Journal of Irrigation and Drainage Engineering, 138(7), 581-591. doi:10.1061/(asce)ir.1943-4774.0000435 es_ES
dc.description.references Ramos, C., & Carbonell, E. A. (1991). Nitrate leaching and soil moisture prediction with the LEACHM model. Fertilizer Research, 27(2-3), 171-180. doi:10.1007/bf01051125 es_ES
dc.description.references Richards, L. A. (1931). CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS. Physics, 1(5), 318-333. doi:10.1063/1.1745010 es_ES
dc.description.references RICHARDS, L. A. (1948). POROUS PLATE APPARATUS FOR MEASURING MOISTURE RETENTION AND TRANSMISSION BY SOIL. Soil Science, 66(2), 105-110. doi:10.1097/00010694-194808000-00003 es_ES
dc.description.references Ruiz-Sanchez, M. C., Domingo, R., & Castel, J. R. (2010). Review. Deficit irrigation in fruit trees and vines in Spain. Spanish Journal of Agricultural Research, 8(S2), 5. doi:10.5424/sjar/201008s2-1343 es_ES
dc.description.references Running, S. W., & Reid, C. P. (1980). Soil Temperature Influences on Root Resistance of Pinus contorta Seedlings. Plant Physiology, 65(4), 635-640. doi:10.1104/pp.65.4.635 es_ES
dc.description.references Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (1998). Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil Science Society of America Journal, 62(4), 847-855. doi:10.2136/sssaj1998.03615995006200040001x es_ES
dc.description.references Sevostianova, E., Deb, S., Serena, M., VanLeeuwen, D., & Leinauer, B. (2015). Accuracy of Two Electromagnetic Soil Water Content Sensors in Saline Soils. Soil Science Society of America Journal, 79(6), 1752-1759. doi:10.2136/sssaj2015.07.0271 es_ES
dc.description.references Spinelli, G. M., Shackel, K. A., & Gilbert, M. E. (2017). A model exploring whether the coupled effects of plant water supply and demand affect the interpretation of water potentials and irrigation management. Agricultural Water Management, 192, 271-280. doi:10.1016/j.agwat.2017.07.019 es_ES
dc.description.references Syvertsen, J. P., Goni, C., & Otero, A. (2003). Fruit load and canopy shading affect leaf characteristics and net gas exchange of «Spring» navel orange trees. Tree Physiology, 23(13), 899-906. doi:10.1093/treephys/23.13.899 es_ES
dc.description.references Thomas, A. M. (1966). In situmeasurement of moisture in soil and similar substances by `fringe’ capacitance. Journal of Scientific Instruments, 43(1), 21-27. doi:10.1088/0950-7671/43/1/306 es_ES
dc.description.references Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58(1-3), 339-366. doi:10.1007/bf02180062 es_ES
dc.description.references Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. doi:10.2136/sssaj1980.03615995004400050002x es_ES
dc.description.references WALKLEY, A., & BLACK, I. A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003 es_ES
dc.description.references Wallis, K. J., Candela, L., Mateos, R. M., & Tamoh, K. (2011). Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport. Agricultural Water Management, 98(10), 1629-1640. doi:10.1016/j.agwat.2011.06.001 es_ES
dc.description.references Yonemoto, Y., Matsumoto, K., Furukawa, T., Asakawa, M., Okuda, H., & Takahara, T. (2004). Effects of rootstock and crop load on sap flow rate in branches of ‘Shirakawa Satsuma’ mandarin (Citrus unshiu Marc.). Scientia Horticulturae, 102(3), 295-300. doi:10.1016/j.scienta.2004.02.005 es_ES
dc.description.references Zhang, K., Greenwood, D. J., Spracklen, W. P., Rahn, C. R., Hammond, J. P., White, P. J., & Burns, I. G. (2010). A universal agro-hydrological model for water and nitrogen cycles in the soil–crop system SMCR_N: Critical update and further validation. Agricultural Water Management, 97(10), 1411-1422. doi:10.1016/j.agwat.2010.03.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem