Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez-Gimeno, M. A. | es_ES |
dc.contributor.author | Jiménez Bello, Miguel Angel | es_ES |
dc.contributor.author | Lidón, Antonio | es_ES |
dc.contributor.author | Manzano Juarez, Juan | es_ES |
dc.contributor.author | Badal, E. | es_ES |
dc.contributor.author | Pérez-Pérez, J. G. | es_ES |
dc.contributor.author | Bonet, L. | es_ES |
dc.contributor.author | Intrigliolo, D. S. | es_ES |
dc.contributor.author | Esteban, A. | es_ES |
dc.date.accessioned | 2021-02-19T04:34:32Z | |
dc.date.available | 2021-02-19T04:34:32Z | |
dc.date.issued | 2020-05-31 | es_ES |
dc.identifier.issn | 0378-3774 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161869 | |
dc.description.abstract | [EN] The accurate estimation of plant water needs is the first step for achieving high crop water productivity. The main objective of the work was to develop an irrigation scheduling procedure for mandarin orchards under Mediterranean conditions based on replacing the amount of consumed water using reference values of soil moisture according to different phenological periods. The proposed methodology includes a definition part where the threshold values were established relating the trees' stem water potential and the volumetric soil water content measured with Frequency Domain Reflectometry probes. A second part includes the steps for standardizing measurements from capacitance probes by using the LEACHM hydrological simulation model to take into account the sensor-to-sensor variations. Finally, an extrapolation procedure based on soil water retention curves was used for adapting critical soil water content thresholds to different soil conditions. Field evaluations were made in a citrus orchard located in eastern Spain during two seasons. Standardize critical soil water contents were: i) 24 % vol. for post-harvest, bloom - fruit set and phase III of fruit growth; ii) 27 % vol. for phase I of fruit growth, and iii) 29 % vol. for phase II of fruit growth with average daily air vapour pressure deficit values ranging between 0.2 - 0.4; 0.9-1.1 and 1.1-1.3 kPa, respectively. When implemented in the orchard, the sensor-based strategy resulted in water saving of 26 % respect to a control treatment, irrigated using the standard FAO-56 approach, without significant differences in yield and increasing the crop water productivity by 33 %. In conclusion, we suggest that the determination and use of the critical soil water content is a useful tool for scheduling irrigation. The proposed standardization and extrapolation methodology allows the irrigation strategy to be applied to other mandarin orchards under similar climatic conditions. | es_ES |
dc.description.sponsorship | This experiment was funded by European project WEAM4i Water & Energy Advanced Management for Irrigation, grant agreement 619061 and FEDER-MINECO projects EASYRIEGO IPT-2012-0950-310000, RISUB IPT-2012-0480-310000 and RIEGOTEL RTC-2016-4972-2. M.A. Martinez-Gimeno acknowledges the financial support received from the Spanish Ministry of Education, Culture and Sports (MECD) program Formacion Profesorado Universitario (FPU). Juan G. Perez-Perez also gratefully acknowledges the post-doctoral contract in the `Ramon y Cajal' program, supplied by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO). Authors would like to thank M. Jorda, C. Albert, F. Sanz and A. Yeves for the support on installation and maintenance of the equipment. Thanks also to Prof. G. Provenzano (University of Palermo) for his critical comments and suggestions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Agricultural Water Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Critical soil water content | es_ES |
dc.subject | Plant water status | es_ES |
dc.subject | Irrigation scheduling | es_ES |
dc.subject | Water savings | es_ES |
dc.subject.classification | MECANICA DE FLUIDOS | es_ES |
dc.subject.classification | EDAFOLOGIA Y QUIMICA AGRICOLA | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.agwat.2020.106151 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/619061/EU/WATER AND ENERGY ADVANCED MANAGEMENT FOR IRRIGATION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IPT-2012-0950-310000/ES/Desarrollo de un sistema experto para la programación automática del riego basado en aspectos agronómicos. (EASYRIEGO)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//IPT-2012-0480-310000/ES/Desarrollo y validación de un sistema de riego subterráneo inteligente/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTC-2016-4972-2/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Martínez-Gimeno, MA.; Jiménez Bello, MA.; Lidón, A.; Manzano Juarez, J.; Badal, E.; Pérez-Pérez, JG.; Bonet, L.... (2020). Mandarin irrigation scheduling by means of frequency domain reflectometry soil moisture monitoring. Agricultural Water Management. 235:1-9. https://doi.org/10.1016/j.agwat.2020.106151 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.agwat.2020.106151 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 235 | es_ES |
dc.relation.pasarela | S\407567 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | ABOUATALLAH, A., SALGHI, R., FADL, A. E., HAMMOUTI, B., ZARROUK, A., ATRAOUI, A., & GHNIZAR, Y. (2012). Shading Nets Usefulness for Water Saving on Citrus Orchards under Different Irrigation Doses. Current World Environment, 7(1), 13-22. doi:10.12944/cwe.7.1.03 | es_ES |
dc.description.references | Alva, A. K., Paramasivam, S., Fares, A., Obreza, T. A., & Schumann, A. W. (2006). Nitrogen best management practice for citrus trees. Scientia Horticulturae, 109(3), 223-233. doi:10.1016/j.scienta.2006.04.011 | es_ES |
dc.description.references | Asada, K., Eguchi, S., Urakawa, R., Itahashi, S., Matsumaru, T., Nagasawa, T., … Katou, H. (2013). Modifying the LEACHM model for process-based prediction of nitrate leaching from cropped Andosols. Plant and Soil, 373(1-2), 609-625. doi:10.1007/s11104-013-1809-7 | es_ES |
dc.description.references | Autovino, D., Rallo, G., & Provenzano, G. (2018). Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agricultural Water Management, 203, 225-235. doi:10.1016/j.agwat.2018.03.015 | es_ES |
dc.description.references | Ballester, C., Castel, J., Intrigliolo, D. S., & Castel, J. R. (2011). Response of Clementina de Nules citrus trees to summer deficit irrigation. Yield components and fruit composition. Agricultural Water Management, 98(6), 1027-1032. doi:10.1016/j.agwat.2011.01.011 | es_ES |
dc.description.references | Ballester, C., Castel, J., El-Mageed, T. A. A., Castel, J. R., & Intrigliolo, D. S. (2014). Long-term response of ‘Clementina de Nules’ citrus trees to summer regulated deficit irrigation. Agricultural Water Management, 138, 78-84. doi:10.1016/j.agwat.2014.03.003 | es_ES |
dc.description.references | Bell, J. P., Dean, T. J., & Hodnett, M. G. (1987). Soil moisture measurement by an improved capacitance technique, part II. Field techniques, evaluation and calibration. Journal of Hydrology, 93(1-2), 79-90. doi:10.1016/0022-1694(87)90195-8 | es_ES |
dc.description.references | CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001 | es_ES |
dc.description.references | Campbell, G. S., & Campbell, M. D. (1982). Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice. Advances in Irrigation, 25-42. doi:10.1016/b978-0-12-024301-3.50008-3 | es_ES |
dc.description.references | Childs, S. W., & Hanks, R. J. (1975). Model of Soil Salinity Effects on Crop Growth. Soil Science Society of America Journal, 39(4), 617-622. doi:10.2136/sssaj1975.03615995003900040016x | es_ES |
dc.description.references | Confalonieri, R., & Bechini, L. (2004). A preliminary evaluation of the simulation model CropSyst for alfalfa. European Journal of Agronomy, 21(2), 223-237. doi:10.1016/j.eja.2003.08.003 | es_ES |
dc.description.references | Consoli, S., O’Connell, N., & Snyder, R. (2006). Measurement of Light Interception by Navel Orange Orchard Canopies: Case Study of Lindsay, California. Journal of Irrigation and Drainage Engineering, 132(1), 9-20. doi:10.1061/(asce)0733-9437(2006)132:1(9) | es_ES |
dc.description.references | Deng, Z., Guan, H., Hutson, J., Forster, M. A., Wang, Y., & Simmons, C. T. (2017). A vegetation‐focused soil‐plant‐atmospheric continuum model to study hydrodynamic soil‐plant water relations. Water Resources Research, 53(6), 4965-4983. doi:10.1002/2017wr020467 | es_ES |
dc.description.references | Evett, S. R., & Parkin, G. W. (2005). Advances in Soil Water Content Sensing: The Continuing Maturation of Technology and Theory. Vadose Zone Journal, 4(4), 986-991. doi:10.2136/vzj2005.0099 | es_ES |
dc.description.references | Evett, S. R., Tolk, J. A., & Howell, T. A. (2006). Soil Profile Water Content Determination: Sensor Accuracy, Axial Response, Calibration, Temperature Dependence, and Precision. Vadose Zone Journal, 5(3), 894-907. doi:10.2136/vzj2005.0149 | es_ES |
dc.description.references | Fares, A., & Polyakov, V. (2006). Advances in Crop Water Management Using Capacitive Water Sensors. Advances in Agronomy, 43-77. doi:10.1016/s0065-2113(06)90002-9 | es_ES |
dc.description.references | Fereres, E., & Soriano, M. A. (2006). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147-159. doi:10.1093/jxb/erl165 | es_ES |
dc.description.references | García-Tejero, I., Durán-Zuazo, V. H., Muriel-Fernández, J. L., Martínez-García, G., & Jiménez-Bocanegra, J. A. (2011). Benefits of low-frequency irrigation in citrus orchards. Agronomy for Sustainable Development, 31(4), 779-791. doi:10.1007/s13593-011-0025-1 | es_ES |
dc.description.references | Girona, J., Mata, M., Fereres, E., Goldhamer, D. ., & Cohen, M. (2002). Evapotranspiration and soil water dynamics of peach trees under water deficits. Agricultural Water Management, 54(2), 107-122. doi:10.1016/s0378-3774(01)00149-4 | es_ES |
dc.description.references | Hoekstra, P., & Delaney, A. (1974). Dielectric properties of soils at UHF and microwave frequencies. Journal of Geophysical Research, 79(11), 1699-1708. doi:10.1029/jb079i011p01699 | es_ES |
dc.description.references | HUTSON, J. L., & CASS, A. (1987). A retentivity function for use in soil-water simulation models. Journal of Soil Science, 38(1), 105-113. doi:10.1111/j.1365-2389.1987.tb02128.x | es_ES |
dc.description.references | Kramer, P. J. (1942). SPECIES DIFFERENCES WITH RESPECT TO WATER ABSORPTION AT LOW SOIL TEMPERATURES. American Journal of Botany, 29(10), 828-832. doi:10.1002/j.1537-2197.1942.tb10287.x | es_ES |
dc.description.references | Lidón, A., Ramos, C., & Rodrigo, A. (1999). Comparison of drainage estimation methods in irrigated citrus orchards. Irrigation Science, 19(1), 25-36. doi:10.1007/s002710050068 | es_ES |
dc.description.references | Lidón, A., Ramos, C., Ginestar, D., & Contreras, W. (2013). Assessment of LEACHN and a simple compartmental model to simulate nitrogen dynamics in citrus orchards. Agricultural Water Management, 121, 42-53. doi:10.1016/j.agwat.2013.01.008 | es_ES |
dc.description.references | Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7(1-2), 51-73. doi:10.1016/0169-7722(91)90038-3 | es_ES |
dc.description.references | Martínez-Gimeno, M. A., Bonet, L., Provenzano, G., Badal, E., Intrigliolo, D. S., & Ballester, C. (2018). Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation. Agricultural Water Management, 206, 209-216. doi:10.1016/j.agwat.2018.05.011 | es_ES |
dc.description.references | Milano, M., Ruelland, D., Fernandez, S., Dezetter, A., Fabre, J., Servat, E., … Thivet, G. (2013). Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrological Sciences Journal, 58(3), 498-518. doi:10.1080/02626667.2013.774458 | es_ES |
dc.description.references | Minacapilli, M., Iovino, M., & D’Urso, G. (2008). A distributed agro-hydrological model for irrigation water demand assessment. Agricultural Water Management, 95(2), 123-132. doi:10.1016/j.agwat.2007.09.008 | es_ES |
dc.description.references | Moriana, A., Pérez-López, D., Prieto, M. H., Ramírez-Santa-Pau, M., & Pérez-Rodriguez, J. M. (2012). Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agricultural Water Management, 112, 43-54. doi:10.1016/j.agwat.2012.06.003 | es_ES |
dc.description.references | Nasri, N., Chebil, M., Guellouz, L., Bouhlila, R., Maslouhi, A., & Ibnoussina, M. (2014). Modelling nonpoint source pollution by nitrate of soil in the Mateur plain, northeast of Tunisia. Arabian Journal of Geosciences, 8(2), 1057-1075. doi:10.1007/s12517-013-1215-8 | es_ES |
dc.description.references | Nicolás, E., Alarcón, J., Mounzer, O., Pedrero, F., Nortes, P., Alcobendas, R., … Maestre-Valero, J. (2016). Long-term physiological and agronomic responses of mandarin trees to irrigation with saline reclaimed water. Agricultural Water Management, 166, 1-8. doi:10.1016/j.agwat.2015.11.017 | es_ES |
dc.description.references | Nimah, M. N., & Hanks, R. J. (1973). Model for Estimating Soil Water, Plant, and Atmospheric Interrelations: I. Description and Sensitivity. Soil Science Society of America Journal, 37(4), 522-527. doi:10.2136/sssaj1973.03615995003700040018x | es_ES |
dc.description.references | Paraskevas, C., Georgiou, P., Ilias, A., Panoras, A., & Babajimopoulos, C. (2012). Calibration equations for two capacitance water content probes. International Agrophysics, 26(3), 285-293. doi:10.2478/v10247-012-0041-7 | es_ES |
dc.description.references | Pérez-Pérez, J. G., Romero, P., Navarro, J. M., & Botía, P. (2008). Response of sweet orange cv ‘Lane late’ to deficit irrigation in two rootstocks. I: water relations, leaf gas exchange and vegetative growth. Irrigation Science, 26(5), 415-425. doi:10.1007/s00271-008-0106-3 | es_ES |
dc.description.references | Pérez-Pérez, J. G., García, J., Robles, J. M., & Botía, P. (2010). Economic analysis of navel orange cv. ‘Lane late’ grown on two different drought-tolerant rootstocks under deficit irrigation in South-eastern Spain. Agricultural Water Management, 97(1), 157-164. doi:10.1016/j.agwat.2009.08.023 | es_ES |
dc.description.references | Pérez-Pérez, J. G., Robles, J. M., & Botía, P. (2014). Effects of deficit irrigation in different fruit growth stages on ‘Star Ruby’ grapefruit trees in semi-arid conditions. Agricultural Water Management, 133, 44-54. doi:10.1016/j.agwat.2013.11.002 | es_ES |
dc.description.references | Provenzano, G., Rallo, G., & Ghazouani, H. (2016). Assessing Field and Laboratory Calibration Protocols for the Diviner 2000 Probe in a Range of Soils with Different Textures. Journal of Irrigation and Drainage Engineering, 142(2), 04015040. doi:10.1061/(asce)ir.1943-4774.0000950 | es_ES |
dc.description.references | Quiñones, A., Martínez-Alcántara, B., & Legaz, F. (2007). Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees. Agriculture, Ecosystems & Environment, 122(3), 399-409. doi:10.1016/j.agee.2007.02.004 | es_ES |
dc.description.references | Rallo, G., Agnese, C., Minacapilli, M., & Provenzano, G. (2012). Comparison of SWAP and FAO Agro-Hydrological Models to Schedule Irrigation of Wine Grapes. Journal of Irrigation and Drainage Engineering, 138(7), 581-591. doi:10.1061/(asce)ir.1943-4774.0000435 | es_ES |
dc.description.references | Ramos, C., & Carbonell, E. A. (1991). Nitrate leaching and soil moisture prediction with the LEACHM model. Fertilizer Research, 27(2-3), 171-180. doi:10.1007/bf01051125 | es_ES |
dc.description.references | Richards, L. A. (1931). CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS. Physics, 1(5), 318-333. doi:10.1063/1.1745010 | es_ES |
dc.description.references | RICHARDS, L. A. (1948). POROUS PLATE APPARATUS FOR MEASURING MOISTURE RETENTION AND TRANSMISSION BY SOIL. Soil Science, 66(2), 105-110. doi:10.1097/00010694-194808000-00003 | es_ES |
dc.description.references | Ruiz-Sanchez, M. C., Domingo, R., & Castel, J. R. (2010). Review. Deficit irrigation in fruit trees and vines in Spain. Spanish Journal of Agricultural Research, 8(S2), 5. doi:10.5424/sjar/201008s2-1343 | es_ES |
dc.description.references | Running, S. W., & Reid, C. P. (1980). Soil Temperature Influences on Root Resistance of Pinus contorta Seedlings. Plant Physiology, 65(4), 635-640. doi:10.1104/pp.65.4.635 | es_ES |
dc.description.references | Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (1998). Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil Science Society of America Journal, 62(4), 847-855. doi:10.2136/sssaj1998.03615995006200040001x | es_ES |
dc.description.references | Sevostianova, E., Deb, S., Serena, M., VanLeeuwen, D., & Leinauer, B. (2015). Accuracy of Two Electromagnetic Soil Water Content Sensors in Saline Soils. Soil Science Society of America Journal, 79(6), 1752-1759. doi:10.2136/sssaj2015.07.0271 | es_ES |
dc.description.references | Spinelli, G. M., Shackel, K. A., & Gilbert, M. E. (2017). A model exploring whether the coupled effects of plant water supply and demand affect the interpretation of water potentials and irrigation management. Agricultural Water Management, 192, 271-280. doi:10.1016/j.agwat.2017.07.019 | es_ES |
dc.description.references | Syvertsen, J. P., Goni, C., & Otero, A. (2003). Fruit load and canopy shading affect leaf characteristics and net gas exchange of «Spring» navel orange trees. Tree Physiology, 23(13), 899-906. doi:10.1093/treephys/23.13.899 | es_ES |
dc.description.references | Thomas, A. M. (1966). In situmeasurement of moisture in soil and similar substances by `fringe’ capacitance. Journal of Scientific Instruments, 43(1), 21-27. doi:10.1088/0950-7671/43/1/306 | es_ES |
dc.description.references | Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant and Soil, 58(1-3), 339-366. doi:10.1007/bf02180062 | es_ES |
dc.description.references | Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. doi:10.2136/sssaj1980.03615995004400050002x | es_ES |
dc.description.references | WALKLEY, A., & BLACK, I. A. (1934). AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Science, 37(1), 29-38. doi:10.1097/00010694-193401000-00003 | es_ES |
dc.description.references | Wallis, K. J., Candela, L., Mateos, R. M., & Tamoh, K. (2011). Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport. Agricultural Water Management, 98(10), 1629-1640. doi:10.1016/j.agwat.2011.06.001 | es_ES |
dc.description.references | Yonemoto, Y., Matsumoto, K., Furukawa, T., Asakawa, M., Okuda, H., & Takahara, T. (2004). Effects of rootstock and crop load on sap flow rate in branches of ‘Shirakawa Satsuma’ mandarin (Citrus unshiu Marc.). Scientia Horticulturae, 102(3), 295-300. doi:10.1016/j.scienta.2004.02.005 | es_ES |
dc.description.references | Zhang, K., Greenwood, D. J., Spracklen, W. P., Rahn, C. R., Hammond, J. P., White, P. J., & Burns, I. G. (2010). A universal agro-hydrological model for water and nitrogen cycles in the soil–crop system SMCR_N: Critical update and further validation. Agricultural Water Management, 97(10), 1411-1422. doi:10.1016/j.agwat.2010.03.007 | es_ES |