Porter, D., & Stirling, D. S. G. (1990). Integral equations. doi:10.1017/cbo9781139172028
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2013). Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Mathematical and Computer Modelling, 57(7-8), 1950-1956. doi:10.1016/j.mcm.2012.01.012
Ortega, J. M. (1968). The Newton-Kantorovich Theorem. The American Mathematical Monthly, 75(6), 658. doi:10.2307/2313800
[+]
Porter, D., & Stirling, D. S. G. (1990). Integral equations. doi:10.1017/cbo9781139172028
Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2013). Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Mathematical and Computer Modelling, 57(7-8), 1950-1956. doi:10.1016/j.mcm.2012.01.012
Ortega, J. M. (1968). The Newton-Kantorovich Theorem. The American Mathematical Monthly, 75(6), 658. doi:10.2307/2313800
Ahmad, F., Rehman, S. U., Ullah, M. Z., Aljahdali, H. M., Ahmad, S., Alshomrani, A. S., … Sivasankaran, S. (2017). Frozen Jacobian Multistep Iterative Method for Solving Nonlinear IVPs and BVPs. Complexity, 2017, 1-30. doi:10.1155/2017/9407656
Argyros, I. K., & Hilout, S. (2013). On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 245, 1-9. doi:10.1016/j.cam.2012.12.002
Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005
Ezquerro, J. A., Grau-Sánchez, M., Hernández, M. A., & Noguera, M. (2013). Semilocal convergence of secant-like methods for differentiable and nondifferentiable operator equations. Journal of Mathematical Analysis and Applications, 398(1), 100-112. doi:10.1016/j.jmaa.2012.08.040
Qin, X., Dehaish, B. A. B., & Cho, S. Y. (2016). Viscosity splitting methods for variational inclusion and fixed point problems in Hilbert spaces. Journal of Nonlinear Sciences and Applications, 09(05), 2789-2797. doi:10.22436/jnsa.009.05.74
Zheng, L., & Gu, C. (2012). Semilocal convergence of a sixth-order method in Banach spaces. Numerical Algorithms, 61(3), 413-427. doi:10.1007/s11075-012-9541-6
Polyanin, A. (1998). Handbook of Integral Equations. doi:10.1201/9781420050066
[-]