- -

Domain of existence for the solution of some IVP's and BVP's by using an efficient ninth-order iterative method

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Domain of existence for the solution of some IVP's and BVP's by using an efficient ninth-order iterative method

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cevallos, Fabricio es_ES
dc.contributor.author Hueso, José L. es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Howk, Cory L. es_ES
dc.date.accessioned 2021-02-20T04:31:00Z
dc.date.available 2021-02-20T04:31:00Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161975
dc.description.abstract [EN] In this paper, we consider the problem of solving initial value problems and boundary value problems through the point of view of its continuous form. It is well known that in most cases these types of problems are solved numerically by performing a discretization and applying the finite difference technique to approximate the derivatives, transforming the equation into a finite-dimensional nonlinear system of equations. However, we would like to focus on the continuous problem, and therefore, we try to set the domain of existence and uniqueness for its analytic solution. For this purpose, we study the semilocal convergence of a Newton-type method with frozen first derivative in Banach spaces. We impose only the assumption that the Frechet derivative satisfies the Lipschitz continuity condition and that it is bounded in the whole domain in order to obtain appropriate recurrence relations so that we may determine the domains of convergence and uniqueness for the solution. Our final aim is to apply these theoretical results to solve applied problems that come from integral equations, ordinary differential equations, and boundary value problems. es_ES
dc.description.sponsorship Spanish Ministry of Science and Innovation. Grant Number: MTM2014- 52016-C2-2-P Generalitat Valenciana Prometeo. Grant Number: 2016/089 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computational efficiency es_ES
dc.subject Iterative methods es_ES
dc.subject Nonlinear equations es_ES
dc.subject Order of convergence es_ES
dc.subject Semilocal convergence es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Domain of existence for the solution of some IVP's and BVP's by using an efficient ninth-order iterative method es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1002/mma.5696 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cevallos, F.; Hueso, JL.; Martínez Molada, E.; Howk, CL. (2020). Domain of existence for the solution of some IVP's and BVP's by using an efficient ninth-order iterative method. Mathematical Methods in the Applied Sciences. 43(14):7934-7947. https://doi.org/10.1002/mma.5696 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Mathematical Modelling in Engineering & Human Behaviour 2018. 20th Edition of the Mathematical Modelling Conference Series at the Institute for Multidisciplinary Mathematics es_ES
dc.relation.conferencedate Julio 16-18,2018 es_ES
dc.relation.conferenceplace Valencia, España es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5696 es_ES
dc.description.upvformatpinicio 7934 es_ES
dc.description.upvformatpfin 7947 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\422747 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Porter, D., & Stirling, D. S. G. (1990). Integral equations. doi:10.1017/cbo9781139172028 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2013). Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Mathematical and Computer Modelling, 57(7-8), 1950-1956. doi:10.1016/j.mcm.2012.01.012 es_ES
dc.description.references Ortega, J. M. (1968). The Newton-Kantorovich Theorem. The American Mathematical Monthly, 75(6), 658. doi:10.2307/2313800 es_ES
dc.description.references Ahmad, F., Rehman, S. U., Ullah, M. Z., Aljahdali, H. M., Ahmad, S., Alshomrani, A. S., … Sivasankaran, S. (2017). Frozen Jacobian Multistep Iterative Method for Solving Nonlinear IVPs and BVPs. Complexity, 2017, 1-30. doi:10.1155/2017/9407656 es_ES
dc.description.references Argyros, I. K., & Hilout, S. (2013). On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 245, 1-9. doi:10.1016/j.cam.2012.12.002 es_ES
dc.description.references Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005 es_ES
dc.description.references Ezquerro, J. A., Grau-Sánchez, M., Hernández, M. A., & Noguera, M. (2013). Semilocal convergence of secant-like methods for differentiable and nondifferentiable operator equations. Journal of Mathematical Analysis and Applications, 398(1), 100-112. doi:10.1016/j.jmaa.2012.08.040 es_ES
dc.description.references Qin, X., Dehaish, B. A. B., & Cho, S. Y. (2016). Viscosity splitting methods for variational inclusion and fixed point problems in Hilbert spaces. Journal of Nonlinear Sciences and Applications, 09(05), 2789-2797. doi:10.22436/jnsa.009.05.74 es_ES
dc.description.references Zheng, L., & Gu, C. (2012). Semilocal convergence of a sixth-order method in Banach spaces. Numerical Algorithms, 61(3), 413-427. doi:10.1007/s11075-012-9541-6 es_ES
dc.description.references Polyanin, A. (1998). Handbook of Integral Equations. doi:10.1201/9781420050066 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem