- -

Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress

Mostrar el registro completo del ítem

Pérez, JJ.; Ewertowska, E.; Berjano, E. (2020). Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress. Lasers in Surgery and Medicine. 52(9):897-906. https://doi.org/10.1002/lsm.23230

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161976

Ficheros en el ítem

Metadatos del ítem

Título: Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress
Autor: Pérez, Juan J Ewertowska, Elzbieta Berjano, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Background and Objectives Radiofrequency (RF)-induced ablation can be carried out inside ducts and vessels by simultaneously dragging a bipolar catheter while applying RF power. Our objective was to characterize the ...[+]
Palabras clave: Ablation , Computer model , Duct , Numerical model , Radiofrequency ablation
Derechos de uso: Reserva de todos los derechos
Fuente:
Lasers in Surgery and Medicine. (issn: 0196-8092 )
DOI: 10.1002/lsm.23230
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/lsm.23230
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BES-2015-073285/ES/BES-2015-073285/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/
Descripción: This is the peer reviewed version of the following article: Pérez, J.J., Ewertowska, E. and Berjano, E. (2020), Computer Modeling for Radiofrequency Bipolar Ablation Inside Ducts and Vessels: Relation Between Pullback Speed and Impedance Progress. Lasers Surg Med, 52: 897-906, which has been published in final form at https://doi.org/10.1002/lsm.23230. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
Spanish Ministerio de Ciencia, Innovacion y Universidades under "Programa Estatal de I + D + i Orientada a los Retos de la Sociedad; Contract grant number: RTI2018-094357-B-C21; Contract grant sponsor: Predoctoral Grant ...[+]
Tipo: Artículo

References

Boon, R., Akkersdijk, G. J. M., & Nio, D. (2010). Percutaneus treatment of varicose veins with bipolar radiofrequency ablation. European Journal of Radiology, 75(1), 43-47. doi:10.1016/j.ejrad.2010.04.015

Atar, M., Kadayifci, A., Daglilar, E., Hagen, C., Fernandez-del Castillo, C., & Brugge, W. R. (2017). Ex vivo human bile duct radiofrequency ablation with a bipolar catheter. Surgical Endoscopy, 32(6), 2808-2813. doi:10.1007/s00464-017-5984-0

Larghi, A., Rimbaș, M., Tringali, A., Boškoski, I., Rizzatti, G., & Costamagna, G. (2019). Endoscopic radiofrequency biliary ablation treatment: A comprehensive review. Digestive Endoscopy, 31(3), 245-255. doi:10.1111/den.13298 [+]
Boon, R., Akkersdijk, G. J. M., & Nio, D. (2010). Percutaneus treatment of varicose veins with bipolar radiofrequency ablation. European Journal of Radiology, 75(1), 43-47. doi:10.1016/j.ejrad.2010.04.015

Atar, M., Kadayifci, A., Daglilar, E., Hagen, C., Fernandez-del Castillo, C., & Brugge, W. R. (2017). Ex vivo human bile duct radiofrequency ablation with a bipolar catheter. Surgical Endoscopy, 32(6), 2808-2813. doi:10.1007/s00464-017-5984-0

Larghi, A., Rimbaș, M., Tringali, A., Boškoski, I., Rizzatti, G., & Costamagna, G. (2019). Endoscopic radiofrequency biliary ablation treatment: A comprehensive review. Digestive Endoscopy, 31(3), 245-255. doi:10.1111/den.13298

Mizandari, M., Kumar, J., Pai, M., Chikovani, T., Azrumelashvili, T., Reccia, I., & Habib, N. (2018). Interventional radiofrequency ablation: A promising therapeutic modality in the management of malignant biliary and pancreatic duct obstruction. Journal of Cancer, 9(4), 629-637. doi:10.7150/jca.23280

Belghazi, K., Pouw, R. E., Koch, A. D., Weusten, B. L. A. M., Schoon, E. J., Curvers, W. L., … Bisschops, R. (2019). Self-sizing radiofrequency ablation balloon for eradication of Barrett’s esophagus: results of an international multicenter randomized trial comparing 3 different treatment regimens. Gastrointestinal Endoscopy, 90(3), 415-423. doi:10.1016/j.gie.2019.05.023

Gianni, C., Chen, Q., Della Rocca, D., Canpolat, U., Ayhan, H., MacDonald, B., … Al-Ahmad, A. (2019). Radiofrequency Balloon Devices for Atrial Fibrillation Ablation. Cardiac Electrophysiology Clinics, 11(3), 487-493. doi:10.1016/j.ccep.2019.05.009

Andaluz, A., Ewertowska, E., Moll, X., Aguilar, A., García, F., Fondevila, D., … Burdío, F. (2019). Endoluminal radiofrequency ablation of the main pancreatic duct is a secure and effective method to produce pancreatic atrophy and to achieve stump closure. Scientific Reports, 9(1). doi:10.1038/s41598-019-42411-7

Burdío, F., Dorcaratto, D., Hernandez, L., Andaluz, A., Moll, X., Quesada, R., … Berjano, E. (2016). Radiofrequency-induced heating versus mechanical stapler for pancreatic stump closure:in vivocomparative study. International Journal of Hyperthermia, 32(3), 272-280. doi:10.3109/02656736.2015.1136845

Braithwaite, B., Hnatek, L., Zierau, U., Camci, M., Akkersdijk, G., Nio, D., … Roche, E. (2012). Radiofrequency-induced thermal therapy: results of a European multicentre study of resistive ablation of incompetent truncal varicose veins. Phlebology: The Journal of Venous Disease, 28(1), 38-46. doi:10.1258/phleb.2012.012013

Badham, G. E., Strong, S. M., & Whiteley, M. S. (2014). An in vitro study to optimise treatment of varicose veins with radiofrequency-induced thermo therapy. Phlebology: The Journal of Venous Disease, 30(1), 17-23. doi:10.1177/0268355514552005

Badham, G. E., Dos Santos, S. J., & Whiteley, M. S. (2017). Radiofrequency-induced thermotherapy (RFiTT) in a porcine liver model andex vivogreat saphenous vein. Minimally Invasive Therapy & Allied Technologies, 26(4), 200-206. doi:10.1080/13645706.2017.1282520

Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., & Webster, J. G. (1995). Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 42(9), 879-890. doi:10.1109/10.412649

Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219

Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754

https://www.engineeringtoolbox.com/specific‐heat‐capacity‐d_391.html. Accessed Jul 26 2019.

https://www.engineeringtoolbox.com/thermal‐conductivity‐d_429.html. Accessed Jul 26 2019.

Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045

Trujillo, M., & Berjano, E. (2013). Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. International Journal of Hyperthermia, 29(6), 590-597. doi:10.3109/02656736.2013.807438

Trujillo, M., Bon, J., José Rivera, M., Burdío, F., & Berjano, E. (2016). Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. International Journal of Hyperthermia, 32(8), 931-939. doi:10.1080/02656736.2016.1190868

Pérez, J. J., Pérez-Cajaraville, J. J., Muñoz, V., & Berjano, E. (2014). Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief. Medical Physics, 41(7), 071708. doi:10.1118/1.4883776

Ewertowska, E., Andaluz, A., Moll, X., Aguilar, A., Garcia, F., Fondevila, D., … Berjano, E. (2019). Development of a catheter-based technique for endoluminal radiofrequency sealing of pancreatic duct. International Journal of Hyperthermia, 36(1), 676-685. doi:10.1080/02656736.2019.1627585

HasgallPA Di GennaroF BaumgartnerC et al.2016. IT'IS Database for thermal and electromagnetic parameters of biological tissues Version 3.0 September 1 2015 www.itis.ethz.ch/database. Accessed May 3 2019.

Zurbuchen, U., Holmer, C., Lehmann, K. S., Stein, T., Roggan, A., Seifarth, C., … Ritz, J.-P. (2010). Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: Importance for therapy planning for the radiofrequency ablation of liver tumours. International Journal of Hyperthermia, 26(1), 26-33. doi:10.3109/02656730903436442

Choi, S. Y., Kwak, B. K., & Seo, T. (2014). Mathematical Modeling of Radiofrequency Ablation for Varicose Veins. Computational and Mathematical Methods in Medicine, 2014, 1-8. doi:10.1155/2014/485353

Reich-Schupke, S., Mumme, A., & Stücker, M. (2010). Histopathological findings in varicose veins following bipolar radiofrequency-induced thermotherapy – results of an ex vivo experiment. Phlebology: The Journal of Venous Disease, 26(2), 69-74. doi:10.1258/phleb.2010.010004

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem