- -

Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez, Juan J es_ES
dc.contributor.author Ewertowska, Elzbieta es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2021-02-20T04:31:04Z
dc.date.available 2021-02-20T04:31:04Z
dc.date.issued 2020-11 es_ES
dc.identifier.issn 0196-8092 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161976
dc.description This is the peer reviewed version of the following article: Pérez, J.J., Ewertowska, E. and Berjano, E. (2020), Computer Modeling for Radiofrequency Bipolar Ablation Inside Ducts and Vessels: Relation Between Pullback Speed and Impedance Progress. Lasers Surg Med, 52: 897-906, which has been published in final form at https://doi.org/10.1002/lsm.23230. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Background and Objectives Radiofrequency (RF)-induced ablation can be carried out inside ducts and vessels by simultaneously dragging a bipolar catheter while applying RF power. Our objective was to characterize the relation between pullback speed, impedance progress, and temperature distribution. Study Design/Materials and Methods We built a numerical model including a bipolar catheter, which is dragged inside a duct while RF power is applied between a pair of electrodes. The model solved a triple-coupled electrical, thermal, and mechanical problem. Lesions were assessed by an Arrhenius model. The numerical model's thermal and electrical characteristics were chosen to obtain the same initial impedance value as in the experiments: 560 omega at 16 degrees C (sample temperature). Results The catheter initially remained still, and the impedance was falling during the application of power. When pullback speed was too slow (<0.4 mm/s) impedance continued to drop when the catheter began to move, creating deep lesions, overheating and impedance roll-off, while at the faster speed (0.4-1.0 mm/s) impedance first rose slightly and then reached a plateau. There was a strong inverse relation between pullback speed and lesion depth. The hottest point was always around the second electrode, creating a kind of hot wake. Conclusions These findings confirm the close relationship between pullback speed and impedance progress, and suggest that the latter factor could be used to guide the procedure and achieve effective and safe ablations along the inner path of a duct or vessel. es_ES
dc.description.sponsorship Spanish Ministerio de Ciencia, Innovacion y Universidades under "Programa Estatal de I + D + i Orientada a los Retos de la Sociedad; Contract grant number: RTI2018-094357-B-C21; Contract grant sponsor: Predoctoral Grant from Ministry of Economy, Industry and Competitiveness (Government of Spain); Contract grant number: BES-2015-073285; Contract grant sponsor: United States Air Force Office of Scientific Research. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Lasers in Surgery and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ablation es_ES
dc.subject Computer model es_ES
dc.subject Duct es_ES
dc.subject Numerical model es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/lsm.23230 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-073285/ES/BES-2015-073285/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Pérez, JJ.; Ewertowska, E.; Berjano, E. (2020). Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress. Lasers in Surgery and Medicine. 52(9):897-906. https://doi.org/10.1002/lsm.23230 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/lsm.23230 es_ES
dc.description.upvformatpinicio 897 es_ES
dc.description.upvformatpfin 906 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 32147852 es_ES
dc.relation.pasarela S\418680 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Air Force Office of Scientific Research es_ES
dc.description.references Boon, R., Akkersdijk, G. J. M., & Nio, D. (2010). Percutaneus treatment of varicose veins with bipolar radiofrequency ablation. European Journal of Radiology, 75(1), 43-47. doi:10.1016/j.ejrad.2010.04.015 es_ES
dc.description.references Atar, M., Kadayifci, A., Daglilar, E., Hagen, C., Fernandez-del Castillo, C., & Brugge, W. R. (2017). Ex vivo human bile duct radiofrequency ablation with a bipolar catheter. Surgical Endoscopy, 32(6), 2808-2813. doi:10.1007/s00464-017-5984-0 es_ES
dc.description.references Larghi, A., Rimbaș, M., Tringali, A., Boškoski, I., Rizzatti, G., & Costamagna, G. (2019). Endoscopic radiofrequency biliary ablation treatment: A comprehensive review. Digestive Endoscopy, 31(3), 245-255. doi:10.1111/den.13298 es_ES
dc.description.references Mizandari, M., Kumar, J., Pai, M., Chikovani, T., Azrumelashvili, T., Reccia, I., & Habib, N. (2018). Interventional radiofrequency ablation: A promising therapeutic modality in the management of malignant biliary and pancreatic duct obstruction. Journal of Cancer, 9(4), 629-637. doi:10.7150/jca.23280 es_ES
dc.description.references Belghazi, K., Pouw, R. E., Koch, A. D., Weusten, B. L. A. M., Schoon, E. J., Curvers, W. L., … Bisschops, R. (2019). Self-sizing radiofrequency ablation balloon for eradication of Barrett’s esophagus: results of an international multicenter randomized trial comparing 3 different treatment regimens. Gastrointestinal Endoscopy, 90(3), 415-423. doi:10.1016/j.gie.2019.05.023 es_ES
dc.description.references Gianni, C., Chen, Q., Della Rocca, D., Canpolat, U., Ayhan, H., MacDonald, B., … Al-Ahmad, A. (2019). Radiofrequency Balloon Devices for Atrial Fibrillation Ablation. Cardiac Electrophysiology Clinics, 11(3), 487-493. doi:10.1016/j.ccep.2019.05.009 es_ES
dc.description.references Andaluz, A., Ewertowska, E., Moll, X., Aguilar, A., García, F., Fondevila, D., … Burdío, F. (2019). Endoluminal radiofrequency ablation of the main pancreatic duct is a secure and effective method to produce pancreatic atrophy and to achieve stump closure. Scientific Reports, 9(1). doi:10.1038/s41598-019-42411-7 es_ES
dc.description.references Burdío, F., Dorcaratto, D., Hernandez, L., Andaluz, A., Moll, X., Quesada, R., … Berjano, E. (2016). Radiofrequency-induced heating versus mechanical stapler for pancreatic stump closure:in vivocomparative study. International Journal of Hyperthermia, 32(3), 272-280. doi:10.3109/02656736.2015.1136845 es_ES
dc.description.references Braithwaite, B., Hnatek, L., Zierau, U., Camci, M., Akkersdijk, G., Nio, D., … Roche, E. (2012). Radiofrequency-induced thermal therapy: results of a European multicentre study of resistive ablation of incompetent truncal varicose veins. Phlebology: The Journal of Venous Disease, 28(1), 38-46. doi:10.1258/phleb.2012.012013 es_ES
dc.description.references Badham, G. E., Strong, S. M., & Whiteley, M. S. (2014). An in vitro study to optimise treatment of varicose veins with radiofrequency-induced thermo therapy. Phlebology: The Journal of Venous Disease, 30(1), 17-23. doi:10.1177/0268355514552005 es_ES
dc.description.references Badham, G. E., Dos Santos, S. J., & Whiteley, M. S. (2017). Radiofrequency-induced thermotherapy (RFiTT) in a porcine liver model andex vivogreat saphenous vein. Minimally Invasive Therapy & Allied Technologies, 26(4), 200-206. doi:10.1080/13645706.2017.1282520 es_ES
dc.description.references Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., & Webster, J. G. (1995). Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 42(9), 879-890. doi:10.1109/10.412649 es_ES
dc.description.references Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219 es_ES
dc.description.references Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 es_ES
dc.description.references https://www.engineeringtoolbox.com/specific‐heat‐capacity‐d_391.html. Accessed Jul 26 2019. es_ES
dc.description.references https://www.engineeringtoolbox.com/thermal‐conductivity‐d_429.html. Accessed Jul 26 2019. es_ES
dc.description.references Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 es_ES
dc.description.references Trujillo, M., & Berjano, E. (2013). Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. International Journal of Hyperthermia, 29(6), 590-597. doi:10.3109/02656736.2013.807438 es_ES
dc.description.references Trujillo, M., Bon, J., José Rivera, M., Burdío, F., & Berjano, E. (2016). Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. International Journal of Hyperthermia, 32(8), 931-939. doi:10.1080/02656736.2016.1190868 es_ES
dc.description.references Pérez, J. J., Pérez-Cajaraville, J. J., Muñoz, V., & Berjano, E. (2014). Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief. Medical Physics, 41(7), 071708. doi:10.1118/1.4883776 es_ES
dc.description.references Ewertowska, E., Andaluz, A., Moll, X., Aguilar, A., Garcia, F., Fondevila, D., … Berjano, E. (2019). Development of a catheter-based technique for endoluminal radiofrequency sealing of pancreatic duct. International Journal of Hyperthermia, 36(1), 676-685. doi:10.1080/02656736.2019.1627585 es_ES
dc.description.references HasgallPA Di GennaroF BaumgartnerC et al.2016. IT'IS Database for thermal and electromagnetic parameters of biological tissues Version 3.0 September 1 2015 www.itis.ethz.ch/database. Accessed May 3 2019. es_ES
dc.description.references Zurbuchen, U., Holmer, C., Lehmann, K. S., Stein, T., Roggan, A., Seifarth, C., … Ritz, J.-P. (2010). Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: Importance for therapy planning for the radiofrequency ablation of liver tumours. International Journal of Hyperthermia, 26(1), 26-33. doi:10.3109/02656730903436442 es_ES
dc.description.references Choi, S. Y., Kwak, B. K., & Seo, T. (2014). Mathematical Modeling of Radiofrequency Ablation for Varicose Veins. Computational and Mathematical Methods in Medicine, 2014, 1-8. doi:10.1155/2014/485353 es_ES
dc.description.references Reich-Schupke, S., Mumme, A., & Stücker, M. (2010). Histopathological findings in varicose veins following bipolar radiofrequency-induced thermotherapy – results of an ex vivo experiment. Phlebology: The Journal of Venous Disease, 26(2), 69-74. doi:10.1258/phleb.2010.010004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem