Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez, Juan J | es_ES |
dc.contributor.author | Ewertowska, Elzbieta | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.date.accessioned | 2021-02-20T04:31:04Z | |
dc.date.available | 2021-02-20T04:31:04Z | |
dc.date.issued | 2020-11 | es_ES |
dc.identifier.issn | 0196-8092 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161976 | |
dc.description | This is the peer reviewed version of the following article: Pérez, J.J., Ewertowska, E. and Berjano, E. (2020), Computer Modeling for Radiofrequency Bipolar Ablation Inside Ducts and Vessels: Relation Between Pullback Speed and Impedance Progress. Lasers Surg Med, 52: 897-906, which has been published in final form at https://doi.org/10.1002/lsm.23230. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Background and Objectives Radiofrequency (RF)-induced ablation can be carried out inside ducts and vessels by simultaneously dragging a bipolar catheter while applying RF power. Our objective was to characterize the relation between pullback speed, impedance progress, and temperature distribution. Study Design/Materials and Methods We built a numerical model including a bipolar catheter, which is dragged inside a duct while RF power is applied between a pair of electrodes. The model solved a triple-coupled electrical, thermal, and mechanical problem. Lesions were assessed by an Arrhenius model. The numerical model's thermal and electrical characteristics were chosen to obtain the same initial impedance value as in the experiments: 560 omega at 16 degrees C (sample temperature). Results The catheter initially remained still, and the impedance was falling during the application of power. When pullback speed was too slow (<0.4 mm/s) impedance continued to drop when the catheter began to move, creating deep lesions, overheating and impedance roll-off, while at the faster speed (0.4-1.0 mm/s) impedance first rose slightly and then reached a plateau. There was a strong inverse relation between pullback speed and lesion depth. The hottest point was always around the second electrode, creating a kind of hot wake. Conclusions These findings confirm the close relationship between pullback speed and impedance progress, and suggest that the latter factor could be used to guide the procedure and achieve effective and safe ablations along the inner path of a duct or vessel. | es_ES |
dc.description.sponsorship | Spanish Ministerio de Ciencia, Innovacion y Universidades under "Programa Estatal de I + D + i Orientada a los Retos de la Sociedad; Contract grant number: RTI2018-094357-B-C21; Contract grant sponsor: Predoctoral Grant from Ministry of Economy, Industry and Competitiveness (Government of Spain); Contract grant number: BES-2015-073285; Contract grant sponsor: United States Air Force Office of Scientific Research. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Lasers in Surgery and Medicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ablation | es_ES |
dc.subject | Computer model | es_ES |
dc.subject | Duct | es_ES |
dc.subject | Numerical model | es_ES |
dc.subject | Radiofrequency ablation | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/lsm.23230 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-073285/ES/BES-2015-073285/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Pérez, JJ.; Ewertowska, E.; Berjano, E. (2020). Computer modeling for radiofrequency bipolar ablation inside ducts and vessels: Relation between pullback speed and impedance progress. Lasers in Surgery and Medicine. 52(9):897-906. https://doi.org/10.1002/lsm.23230 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/lsm.23230 | es_ES |
dc.description.upvformatpinicio | 897 | es_ES |
dc.description.upvformatpfin | 906 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 32147852 | es_ES |
dc.relation.pasarela | S\418680 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | Air Force Office of Scientific Research | es_ES |
dc.description.references | Boon, R., Akkersdijk, G. J. M., & Nio, D. (2010). Percutaneus treatment of varicose veins with bipolar radiofrequency ablation. European Journal of Radiology, 75(1), 43-47. doi:10.1016/j.ejrad.2010.04.015 | es_ES |
dc.description.references | Atar, M., Kadayifci, A., Daglilar, E., Hagen, C., Fernandez-del Castillo, C., & Brugge, W. R. (2017). Ex vivo human bile duct radiofrequency ablation with a bipolar catheter. Surgical Endoscopy, 32(6), 2808-2813. doi:10.1007/s00464-017-5984-0 | es_ES |
dc.description.references | Larghi, A., Rimbaș, M., Tringali, A., Boškoski, I., Rizzatti, G., & Costamagna, G. (2019). Endoscopic radiofrequency biliary ablation treatment: A comprehensive review. Digestive Endoscopy, 31(3), 245-255. doi:10.1111/den.13298 | es_ES |
dc.description.references | Mizandari, M., Kumar, J., Pai, M., Chikovani, T., Azrumelashvili, T., Reccia, I., & Habib, N. (2018). Interventional radiofrequency ablation: A promising therapeutic modality in the management of malignant biliary and pancreatic duct obstruction. Journal of Cancer, 9(4), 629-637. doi:10.7150/jca.23280 | es_ES |
dc.description.references | Belghazi, K., Pouw, R. E., Koch, A. D., Weusten, B. L. A. M., Schoon, E. J., Curvers, W. L., … Bisschops, R. (2019). Self-sizing radiofrequency ablation balloon for eradication of Barrett’s esophagus: results of an international multicenter randomized trial comparing 3 different treatment regimens. Gastrointestinal Endoscopy, 90(3), 415-423. doi:10.1016/j.gie.2019.05.023 | es_ES |
dc.description.references | Gianni, C., Chen, Q., Della Rocca, D., Canpolat, U., Ayhan, H., MacDonald, B., … Al-Ahmad, A. (2019). Radiofrequency Balloon Devices for Atrial Fibrillation Ablation. Cardiac Electrophysiology Clinics, 11(3), 487-493. doi:10.1016/j.ccep.2019.05.009 | es_ES |
dc.description.references | Andaluz, A., Ewertowska, E., Moll, X., Aguilar, A., García, F., Fondevila, D., … Burdío, F. (2019). Endoluminal radiofrequency ablation of the main pancreatic duct is a secure and effective method to produce pancreatic atrophy and to achieve stump closure. Scientific Reports, 9(1). doi:10.1038/s41598-019-42411-7 | es_ES |
dc.description.references | Burdío, F., Dorcaratto, D., Hernandez, L., Andaluz, A., Moll, X., Quesada, R., … Berjano, E. (2016). Radiofrequency-induced heating versus mechanical stapler for pancreatic stump closure:in vivocomparative study. International Journal of Hyperthermia, 32(3), 272-280. doi:10.3109/02656736.2015.1136845 | es_ES |
dc.description.references | Braithwaite, B., Hnatek, L., Zierau, U., Camci, M., Akkersdijk, G., Nio, D., … Roche, E. (2012). Radiofrequency-induced thermal therapy: results of a European multicentre study of resistive ablation of incompetent truncal varicose veins. Phlebology: The Journal of Venous Disease, 28(1), 38-46. doi:10.1258/phleb.2012.012013 | es_ES |
dc.description.references | Badham, G. E., Strong, S. M., & Whiteley, M. S. (2014). An in vitro study to optimise treatment of varicose veins with radiofrequency-induced thermo therapy. Phlebology: The Journal of Venous Disease, 30(1), 17-23. doi:10.1177/0268355514552005 | es_ES |
dc.description.references | Badham, G. E., Dos Santos, S. J., & Whiteley, M. S. (2017). Radiofrequency-induced thermotherapy (RFiTT) in a porcine liver model andex vivogreat saphenous vein. Minimally Invasive Therapy & Allied Technologies, 26(4), 200-206. doi:10.1080/13645706.2017.1282520 | es_ES |
dc.description.references | Panescu, D., Whayne, J. G., Fleischman, S. D., Mirotznik, M. S., Swanson, D. K., & Webster, J. G. (1995). Three-dimensional finite element analysis of current density and temperature distributions during radio-frequency ablation. IEEE Transactions on Biomedical Engineering, 42(9), 879-890. doi:10.1109/10.412649 | es_ES |
dc.description.references | Jain, M. K., & Wolf, P. D. (2000). A Three-Dimensional Finite Element Model of Radiofrequency Ablation with Blood Flow and its Experimental Validation. Annals of Biomedical Engineering, 28(9), 1075-1084. doi:10.1114/1.1310219 | es_ES |
dc.description.references | Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 | es_ES |
dc.description.references | https://www.engineeringtoolbox.com/specific‐heat‐capacity‐d_391.html. Accessed Jul 26 2019. | es_ES |
dc.description.references | https://www.engineeringtoolbox.com/thermal‐conductivity‐d_429.html. Accessed Jul 26 2019. | es_ES |
dc.description.references | Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 | es_ES |
dc.description.references | Trujillo, M., & Berjano, E. (2013). Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. International Journal of Hyperthermia, 29(6), 590-597. doi:10.3109/02656736.2013.807438 | es_ES |
dc.description.references | Trujillo, M., Bon, J., José Rivera, M., Burdío, F., & Berjano, E. (2016). Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. International Journal of Hyperthermia, 32(8), 931-939. doi:10.1080/02656736.2016.1190868 | es_ES |
dc.description.references | Pérez, J. J., Pérez-Cajaraville, J. J., Muñoz, V., & Berjano, E. (2014). Computer modeling of electrical and thermal performance during bipolar pulsed radiofrequency for pain relief. Medical Physics, 41(7), 071708. doi:10.1118/1.4883776 | es_ES |
dc.description.references | Ewertowska, E., Andaluz, A., Moll, X., Aguilar, A., Garcia, F., Fondevila, D., … Berjano, E. (2019). Development of a catheter-based technique for endoluminal radiofrequency sealing of pancreatic duct. International Journal of Hyperthermia, 36(1), 676-685. doi:10.1080/02656736.2019.1627585 | es_ES |
dc.description.references | HasgallPA Di GennaroF BaumgartnerC et al.2016. IT'IS Database for thermal and electromagnetic parameters of biological tissues Version 3.0 September 1 2015 www.itis.ethz.ch/database. Accessed May 3 2019. | es_ES |
dc.description.references | Zurbuchen, U., Holmer, C., Lehmann, K. S., Stein, T., Roggan, A., Seifarth, C., … Ritz, J.-P. (2010). Determination of the temperature-dependent electric conductivity of liver tissue ex vivo and in vivo: Importance for therapy planning for the radiofrequency ablation of liver tumours. International Journal of Hyperthermia, 26(1), 26-33. doi:10.3109/02656730903436442 | es_ES |
dc.description.references | Choi, S. Y., Kwak, B. K., & Seo, T. (2014). Mathematical Modeling of Radiofrequency Ablation for Varicose Veins. Computational and Mathematical Methods in Medicine, 2014, 1-8. doi:10.1155/2014/485353 | es_ES |
dc.description.references | Reich-Schupke, S., Mumme, A., & Stücker, M. (2010). Histopathological findings in varicose veins following bipolar radiofrequency-induced thermotherapy – results of an ex vivo experiment. Phlebology: The Journal of Venous Disease, 26(2), 69-74. doi:10.1258/phleb.2010.010004 | es_ES |