- -

Triplex hybridization-based nanosystem for the rapid screening of pneumocystis pneumonia in clinical samples

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Triplex hybridization-based nanosystem for the rapid screening of pneumocystis pneumonia in clinical samples

Show full item record

Pla, L.; Aviñó, A.; Eritja, R.; Ruiz-Gaitán, A.; Pemán, J.; Friaza, V.; Calderón, EJ.... (2020). Triplex hybridization-based nanosystem for the rapid screening of pneumocystis pneumonia in clinical samples. Journal of Fungi. 6(4):1-14. https://doi.org/10.3390/jof6040292

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161977

Files in this item

Item Metadata

Title: Triplex hybridization-based nanosystem for the rapid screening of pneumocystis pneumonia in clinical samples
Author: Pla, Luis Aviñó, Anna Eritja, Ramón Ruiz-Gaitán, Alba Pemán, Javier Friaza, Vicente Calderón, Enrique J. Aznar, Elena Martínez-Máñez, Ramón Santiago Felipe, Sara
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Pneumocystis pneumonia (PcP) is a disease produced by the opportunistic infection of the fungus Pneumocystis jirovecii. As delayed or unsuitable treatments increase the risk of mortality, the development of rapid and ...[+]
Subjects: Nanoporous anodic alumina , Pneumocystis jirovecii , Molecular gates , Oligonucleotides , Biosensor
Copyrigths: Reconocimiento (by)
Source:
Journal of Fungi. (eissn: 2309-608X )
DOI: 10.3390/jof6040292
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/jof6040292
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-84415-R/ES/ESTUDIO DE LAS ESTRUCTURAS DE ADN CON POTENCIAL BIOMEDICO/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
Thanks:
This research was funded by the Spanish Government, (projects RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and CTQ2017-84415-R), the Generalitat Valenciana (project PROMETEO/2018/024) and CIBER-BBN (projects NANOPATH and CANDI-EYE).[+]
Type: Artículo

References

Fauchier, T., Hasseine, L., Gari-Toussaint, M., Casanova, V., Marty, P. M., & Pomares, C. (2016). Detection of Pneumocystis jirovecii by Quantitative PCR To Differentiate Colonization and Pneumonia in Immunocompromised HIV-Positive and HIV-Negative Patients. Journal of Clinical Microbiology, 54(6), 1487-1495. doi:10.1128/jcm.03174-15

Skalski, J. H., Kottom, T. J., & Limper, A. H. (2015). Pathobiology ofPneumocystispneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Research, 15(6), fov046. doi:10.1093/femsyr/fov046

Dellière, S., Gits-Muselli, M., Bretagne, S., & Alanio, A. (2019). Outbreak-Causing Fungi: Pneumocystis jirovecii. Mycopathologia. doi:10.1007/s11046-019-00408-w [+]
Fauchier, T., Hasseine, L., Gari-Toussaint, M., Casanova, V., Marty, P. M., & Pomares, C. (2016). Detection of Pneumocystis jirovecii by Quantitative PCR To Differentiate Colonization and Pneumonia in Immunocompromised HIV-Positive and HIV-Negative Patients. Journal of Clinical Microbiology, 54(6), 1487-1495. doi:10.1128/jcm.03174-15

Skalski, J. H., Kottom, T. J., & Limper, A. H. (2015). Pathobiology ofPneumocystispneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Research, 15(6), fov046. doi:10.1093/femsyr/fov046

Dellière, S., Gits-Muselli, M., Bretagne, S., & Alanio, A. (2019). Outbreak-Causing Fungi: Pneumocystis jirovecii. Mycopathologia. doi:10.1007/s11046-019-00408-w

Montes-Cano, M. A., Chabe, M., Fontillon-Alberdi, M., de la Horra, C., Respaldiza, N., Medrano, F. J., … Calderon, E. J. (2009). Vertical Transmission ofPneumocystis jiroveciiin Humans. Emerging Infectious Diseases, 15(1), 125-127. doi:10.3201/eid1501.080242

Durand-Joly, I., Chabé, M., Soula, F., Delhaes, L., Camus, D., & Dei-Cas, E. (2005). Molecular diagnosis ofPneumocystispneumonia. FEMS Immunology & Medical Microbiology, 45(3), 405-410. doi:10.1016/j.femsim.2005.06.006

Song, Y., Ren, Y., Wang, X., & Li, R. (2016). Recent Advances in the Diagnosis of <I>Pneumocystis</I> Pneumonia. Medical Mycology Journal, 57(4), E111-E116. doi:10.3314/mmj.16-00019

Luísa Tomás, A., & Matos, O. (2018). Pneumocystis jirovecii Pneumonia: Current Advances in Laboratory Diagnosis. OBM Genetics, 2(4), 1-1. doi:10.21926/obm.genet.1804049

Urabe, N., Sakamoto, S., Sano, G., Ito, A., Sekiguchi, R., & Homma, S. (2019). Serial change in serum biomarkers during treatment of Non-HIV Pneumocystis pneumonia. Journal of Infection and Chemotherapy, 25(12), 936-942. doi:10.1016/j.jiac.2019.05.007

Esteves, F., Calé, S. S., Badura, R., de Boer, M. G., Maltez, F., Calderón, E. J., … Matos, O. (2015). Diagnosis of Pneumocystis pneumonia: evaluation of four serologic biomarkers. Clinical Microbiology and Infection, 21(4), 379.e1-379.e10. doi:10.1016/j.cmi.2014.11.025

Tomás, A. L., Cardoso, F., Esteves, F., & Matos, O. (2016). Serological diagnosis of pneumocystosis: production of a synthetic recombinant antigen for immunodetection of Pneumocystis jirovecii. Scientific Reports, 6(1). doi:10.1038/srep36287

Arvanitis, M., Anagnostou, T., Fuchs, B. B., Caliendo, A. M., & Mylonakis, E. (2014). Molecular and Nonmolecular Diagnostic Methods for Invasive Fungal Infections. Clinical Microbiology Reviews, 27(3), 490-526. doi:10.1128/cmr.00091-13

Tomás, A. L., de Almeida, M. P., Cardoso, F., Pinto, M., Pereira, E., Franco, R., & Matos, O. (2019). Development of a Gold Nanoparticle-Based Lateral-Flow Immunoassay for Pneumocystis Pneumonia Serological Diagnosis at Point-of-Care. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.02917

García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242

Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090

Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053

Mondragón, L., Mas, N., Ferragud, V., de la Torre, C., Agostini, A., Martínez-Máñez, R., … Orzáez, M. (2014). Enzyme-Responsive Intracellular-Controlled Release Using Silica Mesoporous Nanoparticles Capped with ε-Poly-L-lysine. Chemistry - A European Journal, 20(18), 5271-5281. doi:10.1002/chem.201400148

Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139

Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k

Ouyang, C., Zhang, S., Xue, C., Yu, X., Xu, H., Wang, Z., … Wu, Z.-S. (2020). Precision-Guided Missile-Like DNA Nanostructure Containing Warhead and Guidance Control for Aptamer-Based Targeted Drug Delivery into Cancer Cells in Vitro and in Vivo. Journal of the American Chemical Society, 142(3), 1265-1277. doi:10.1021/jacs.9b09782

Argoubi, W., Sánchez, A., Parrado, C., Raouafi, N., & Villalonga, R. (2018). Label-free electrochemical aptasensing platform based on mesoporous silica thin film for the detection of prostate specific antigen. Sensors and Actuators B: Chemical, 255, 309-315. doi:10.1016/j.snb.2017.08.045

Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j

Pla, L., Xifré-Pérez, E., Ribes, À., Aznar, E., Marcos, M. D., Marsal, L. F., … Sancenón, F. (2017). A Mycoplasma Genomic DNA Probe using Gated Nanoporous Anodic Alumina. ChemPlusChem, 82(3), 337-341. doi:10.1002/cplu.201600651

Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., Pemán, J., … Martínez-Máñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169

Goñi, J. R., Vaquerizas, J. M., Dopazo, J., & Orozco, M. (2006). Exploring the reasons for the large density of triplex-forming oligonucleotide target sequences in the human regulatory regions. BMC Genomics, 7(1). doi:10.1186/1471-2164-7-63

Frank-Kamenetskii, M. D., & Mirkin, S. M. (1995). TRIPLEX DNA STRUCTURES. Annual Review of Biochemistry, 64(1), 65-95. doi:10.1146/annurev.bi.64.070195.000433

Goni, J. R. (2004). Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Research, 32(1), 354-360. doi:10.1093/nar/gkh188

Avino, A. (2002). Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines. Nucleic Acids Research, 30(12), 2609-2619. doi:10.1093/nar/gkf374

Nadal, A., Eritja, R., Esteve, T., & Pla, M. (2005). «Parallel» and «Antiparallel Tail-Clamps» Increase the Efficiency of Triplex Formation with Structured DNA and RNA Targets. ChemBioChem, 6(6), 1034-1042. doi:10.1002/cbic.200400358

Carrascosa, L. G., Gómez-Montes, S., Aviñó, A., Nadal, A., Pla, M., Eritja, R., & Lechuga, L. M. (2012). Sensitive and label-free biosensing of RNA with predicted secondary structures by a triplex affinity capture method. Nucleic Acids Research, 40(8), e56-e56. doi:10.1093/nar/gkr1304

Aviñó, A., Huertas, C. S., Lechuga, L. M., & Eritja, R. (2015). Sensitive and label-free detection of miRNA-145 by triplex formation. Analytical and Bioanalytical Chemistry, 408(3), 885-893. doi:10.1007/s00216-015-9180-6

Wei, S., Chen, G., Jia, X., Mao, X., Chen, T., Mao, D., … Xiong, W. (2020). Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA. Analytica Chimica Acta, 1095, 179-184. doi:10.1016/j.aca.2019.10.020

Ribes, À., Santiago-Felipe, S., Aviñó, A., Candela-Noguera, V., Eritja, R., Sancenón, F., … Aznar, E. (2018). Design of oligonucleotide-capped mesoporous silica nanoparticles for the detection of miRNA-145 by duplex and triplex formation. Sensors and Actuators B: Chemical, 277, 598-603. doi:10.1016/j.snb.2018.09.026

Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g

Oroval, M., Coll, C., Bernardos, A., Marcos, M. D., Martínez-Máñez, R., Shchukin, D. G., & Sancenón, F. (2017). Selective Fluorogenic Sensing of As(III) Using Aptamer-Capped Nanomaterials. ACS Applied Materials & Interfaces, 9(13), 11332-11336. doi:10.1021/acsami.6b15164

Vojkuvka, L., Marsal, L. F., Ferré-Borrull, J., Formentin, P., & Pallarés, J. (2008). Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization. Superlattices and Microstructures, 44(4-5), 577-582. doi:10.1016/j.spmi.2007.10.005

Matsumura, Y., Tsuchido, Y., Yamamoto, M., Nakano, S., & Nagao, M. (2018). Development of a fully automated PCR assay for the detection of Pneumocystis jirovecii using the GENECUBE system. Medical Mycology, 57(7), 841-847. doi:10.1093/mmy/myy145

Yang, S.-L., Wen, Y.-H., Wu, Y.-S., Wang, M.-C., Chang, P.-Y., Yang, S., & Lu, J.-J. (2020). Diagnosis of Pneumocystis pneumonia by real-time PCR in patients with various underlying diseases. Journal of Microbiology, Immunology and Infection, 53(5), 785-790. doi:10.1016/j.jmii.2019.08.012

Moodley, B., Tempia, S., & Frean, J. A. (2017). Comparison of quantitative real-time PCR and direct immunofluorescence for the detection of Pneumocystis jirovecii. PLOS ONE, 12(7), e0180589. doi:10.1371/journal.pone.0180589

Alanio, A., Desoubeaux, G., Sarfati, C., Hamane, S., Bergeron, A., Azoulay, E., … Menotti, J. (2011). Real-time PCR assay-based strategy for differentiation between active Pneumocystis jirovecii pneumonia and colonization in immunocompromised patients. Clinical Microbiology and Infection, 17(10), 1531-1537. doi:10.1111/j.1469-0691.2010.03400.x

Marimuthu, S. (2019). Development of a Real-time PCR assay for Pneumocystis jirovecii on the Luminex ARIES® Platform. Journal of Respiratory Infections, 3(1). doi:10.18297/jri/vol3/iss1/5

Cissé, O. H., Almeida, J. M. G. C. F., Fonseca, Á., Kumar, A. A., Salojärvi, J., Overmyer, K., … Pagni, M. (2013). Genome Sequencing of the Plant Pathogen Taphrina deformans , the Causal Agent of Peach Leaf Curl. mBio, 4(3). doi:10.1128/mbio.00055-13

Rojas, P., Friaza, V., García, E., de la Horra, C., Vargas, S. L., Calderón, E. J., & Pavón, A. (2017). Early Acquisition of Pneumocystis jirovecii Colonization and Potential Association With Respiratory Distress Syndrome in Preterm Newborn Infants. Clinical Infectious Diseases, 65(6), 976-981. doi:10.1093/cid/cix454

Kidd, S. E., Chen, S. C.-A., Meyer, W., & Halliday, C. L. (2020). A New Age in Molecular Diagnostics for Invasive Fungal Disease: Are We Ready? Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.02903

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record