- -

Solving two-phase freezing Stefan problems: Stability and monotonicity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving two-phase freezing Stefan problems: Stability and monotonicity

Mostrar el registro completo del ítem

Piqueras, MA.; Company Rossi, R.; Jódar Sánchez, LA. (2020). Solving two-phase freezing Stefan problems: Stability and monotonicity. Mathematical Methods in the Applied Sciences. 43(14):7948-7960. https://doi.org/10.1002/mma.5787

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161982

Ficheros en el ítem

Metadatos del ítem

Título: Solving two-phase freezing Stefan problems: Stability and monotonicity
Autor: Piqueras, Miguel A. Company Rossi, Rafael Jódar Sánchez, Lucas Antonio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The two-phase Stefan problems with phase formation and depletion are special cases ofmoving boundary problemswith interest in science and industry. In this work, we study a solidification problem, introducing a ...[+]
Palabras clave: Finite difference methods , Non-linear partial differential system , Numerical analysis , Numerical modelling , Two-phase Stefan problem
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematical Methods in the Applied Sciences. (issn: 0170-4214 )
DOI: 10.1002/mma.5787
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mma.5787
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Agradecimientos:
Ministerio de Ciencia, Innovacion y Universidades, Grant/Award Number: MTM2017-89664-P.
Tipo: Artículo

References

Schmidt, A. (1996). Computation of Three Dimensional Dendrites with Finite Elements. Journal of Computational Physics, 125(2), 293-312. doi:10.1006/jcph.1996.0095

Singh, S., & Bhargava, R. (2014). Simulation of Phase Transition During Cryosurgical Treatment of a Tumor Tissue Loaded With Nanoparticles Using Meshfree Approach. Journal of Heat Transfer, 136(12). doi:10.1115/1.4028730

Company, R., Egorova, V. N., & Jódar, L. (2014). Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing. Abstract and Applied Analysis, 2014, 1-9. doi:10.1155/2014/146745 [+]
Schmidt, A. (1996). Computation of Three Dimensional Dendrites with Finite Elements. Journal of Computational Physics, 125(2), 293-312. doi:10.1006/jcph.1996.0095

Singh, S., & Bhargava, R. (2014). Simulation of Phase Transition During Cryosurgical Treatment of a Tumor Tissue Loaded With Nanoparticles Using Meshfree Approach. Journal of Heat Transfer, 136(12). doi:10.1115/1.4028730

Company, R., Egorova, V. N., & Jódar, L. (2014). Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing. Abstract and Applied Analysis, 2014, 1-9. doi:10.1155/2014/146745

Griewank, P. J., & Notz, D. (2013). Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage. Journal of Geophysical Research: Oceans, 118(7), 3370-3386. doi:10.1002/jgrc.20247

Javierre, E., Vuik, C., Vermolen, F. J., & van der Zwaag, S. (2006). A comparison of numerical models for one-dimensional Stefan problems. Journal of Computational and Applied Mathematics, 192(2), 445-459. doi:10.1016/j.cam.2005.04.062

Briozzo, A. C., Natale, M. F., & Tarzia, D. A. (2007). Explicit solutions for a two-phase unidimensional Lamé–Clapeyron–Stefan problem with source terms in both phases. Journal of Mathematical Analysis and Applications, 329(1), 145-162. doi:10.1016/j.jmaa.2006.05.083

Caldwell, J., & Chan, C.-C. (2000). Spherical solidification by the enthalpy method and the heat balance integral method. Applied Mathematical Modelling, 24(1), 45-53. doi:10.1016/s0307-904x(99)00031-1

Chantasiriwan, S., Johansson, B. T., & Lesnic, D. (2009). The method of fundamental solutions for free surface Stefan problems. Engineering Analysis with Boundary Elements, 33(4), 529-538. doi:10.1016/j.enganabound.2008.08.010

Hon, Y. C., & Li, M. (2008). A computational method for inverse free boundary determination problem. International Journal for Numerical Methods in Engineering, 73(9), 1291-1309. doi:10.1002/nme.2122

RIZWAN-UDDIN. (1999). A Nodal Method for Phase Change Moving Boundary Problems. International Journal of Computational Fluid Dynamics, 11(3-4), 211-221. doi:10.1080/10618569908940875

Caldwell, J., & Kwan, Y. Y. (2003). On the perturbation method for the Stefan problem with time-dependent boundary conditions. International Journal of Heat and Mass Transfer, 46(8), 1497-1501. doi:10.1016/s0017-9310(02)00415-5

Stephan, K., & Holzknecht, B. (1976). Die asymptotischen lösungen für vorgänge des erstarrens. International Journal of Heat and Mass Transfer, 19(6), 597-602. doi:10.1016/0017-9310(76)90042-9

Savović, S., & Caldwell, J. (2003). Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions. International Journal of Heat and Mass Transfer, 46(15), 2911-2916. doi:10.1016/s0017-9310(03)00050-4

Kutluay, S., Bahadir, A. R., & Özdeş, A. (1997). The numerical solution of one-phase classical Stefan problem. Journal of Computational and Applied Mathematics, 81(1), 135-144. doi:10.1016/s0377-0427(97)00034-4

Asaithambi, N. S. (1997). A variable time step Galerkin method for a one-dimensional Stefan problem. Applied Mathematics and Computation, 81(2-3), 189-200. doi:10.1016/0096-3003(95)00329-0

Landau, H. G. (1950). Heat conduction in a melting solid. Quarterly of Applied Mathematics, 8(1), 81-94. doi:10.1090/qam/33441

Churchill, S. W., & Gupta, J. P. (1977). Approximations for conduction with freezing or melting. International Journal of Heat and Mass Transfer, 20(11), 1251-1253. doi:10.1016/0017-9310(77)90134-x

Kutluay, S., & Esen, A. (2004). An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition. Applied Mathematics and Computation, 150(1), 59-67. doi:10.1016/s0096-3003(03)00197-8

Esen, A., & Kutluay, S. (2004). A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method. Applied Mathematics and Computation, 148(2), 321-329. doi:10.1016/s0096-3003(02)00846-9

Mitchell, S. L., & Vynnycky, M. (2016). On the accurate numerical solution of a two-phase Stefan problem with phase formation and depletion. Journal of Computational and Applied Mathematics, 300, 259-274. doi:10.1016/j.cam.2015.12.021

Meek, P. C., & Norbury, J. (1984). Nonlinear Moving Boundary Problems and a Keller Box Scheme. SIAM Journal on Numerical Analysis, 21(5), 883-893. doi:10.1137/0721057

Tarzia, D. (2017). Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions. Thermal Science, 21(1 Part A), 187-197. doi:10.2298/tsci140607003t

Plemmons, R. J. (1977). M-matrix characterizations.I—nonsingular M-matrices. Linear Algebra and its Applications, 18(2), 175-188. doi:10.1016/0024-3795(77)90073-8

Axelsson, O. (1994). Iterative Solution Methods. doi:10.1017/cbo9780511624100

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem