- -

Solving two-phase freezing Stefan problems: Stability and monotonicity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving two-phase freezing Stefan problems: Stability and monotonicity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Piqueras, Miguel A. es_ES
dc.contributor.author Company Rossi, Rafael es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2021-02-20T04:31:17Z
dc.date.available 2021-02-20T04:31:17Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161982
dc.description.abstract [EN] The two-phase Stefan problems with phase formation and depletion are special cases ofmoving boundary problemswith interest in science and industry. In this work, we study a solidification problem, introducing a front-fixing transformation. The resulting non-linear partial differential system involves singularities, both at the beginning of the freezing process and when the depletion is complete, that are treated with special attention in the numerical modelling. The problem is decomposed in three stages, in which implicit and explicit finite difference schemes are used. Numerical analysis reveals qualitative properties of the numerical solution spatial monotonicity of both solid and liquid temperatures and the evolution of the solidification front. Numerical experiments illustrate the behaviour of the temperatures profiles with time, as well as the dynamics of the solidification front. es_ES
dc.description.sponsorship Ministerio de Ciencia, Innovacion y Universidades, Grant/Award Number: MTM2017-89664-P. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Finite difference methods es_ES
dc.subject Non-linear partial differential system es_ES
dc.subject Numerical analysis es_ES
dc.subject Numerical modelling es_ES
dc.subject Two-phase Stefan problem es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving two-phase freezing Stefan problems: Stability and monotonicity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5787 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Piqueras, MA.; Company Rossi, R.; Jódar Sánchez, LA. (2020). Solving two-phase freezing Stefan problems: Stability and monotonicity. Mathematical Methods in the Applied Sciences. 43(14):7948-7960. https://doi.org/10.1002/mma.5787 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5787 es_ES
dc.description.upvformatpinicio 7948 es_ES
dc.description.upvformatpfin 7960 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\416903 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Schmidt, A. (1996). Computation of Three Dimensional Dendrites with Finite Elements. Journal of Computational Physics, 125(2), 293-312. doi:10.1006/jcph.1996.0095 es_ES
dc.description.references Singh, S., & Bhargava, R. (2014). Simulation of Phase Transition During Cryosurgical Treatment of a Tumor Tissue Loaded With Nanoparticles Using Meshfree Approach. Journal of Heat Transfer, 136(12). doi:10.1115/1.4028730 es_ES
dc.description.references Company, R., Egorova, V. N., & Jódar, L. (2014). Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing. Abstract and Applied Analysis, 2014, 1-9. doi:10.1155/2014/146745 es_ES
dc.description.references Griewank, P. J., & Notz, D. (2013). Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage. Journal of Geophysical Research: Oceans, 118(7), 3370-3386. doi:10.1002/jgrc.20247 es_ES
dc.description.references Javierre, E., Vuik, C., Vermolen, F. J., & van der Zwaag, S. (2006). A comparison of numerical models for one-dimensional Stefan problems. Journal of Computational and Applied Mathematics, 192(2), 445-459. doi:10.1016/j.cam.2005.04.062 es_ES
dc.description.references Briozzo, A. C., Natale, M. F., & Tarzia, D. A. (2007). Explicit solutions for a two-phase unidimensional Lamé–Clapeyron–Stefan problem with source terms in both phases. Journal of Mathematical Analysis and Applications, 329(1), 145-162. doi:10.1016/j.jmaa.2006.05.083 es_ES
dc.description.references Caldwell, J., & Chan, C.-C. (2000). Spherical solidification by the enthalpy method and the heat balance integral method. Applied Mathematical Modelling, 24(1), 45-53. doi:10.1016/s0307-904x(99)00031-1 es_ES
dc.description.references Chantasiriwan, S., Johansson, B. T., & Lesnic, D. (2009). The method of fundamental solutions for free surface Stefan problems. Engineering Analysis with Boundary Elements, 33(4), 529-538. doi:10.1016/j.enganabound.2008.08.010 es_ES
dc.description.references Hon, Y. C., & Li, M. (2008). A computational method for inverse free boundary determination problem. International Journal for Numerical Methods in Engineering, 73(9), 1291-1309. doi:10.1002/nme.2122 es_ES
dc.description.references RIZWAN-UDDIN. (1999). A Nodal Method for Phase Change Moving Boundary Problems. International Journal of Computational Fluid Dynamics, 11(3-4), 211-221. doi:10.1080/10618569908940875 es_ES
dc.description.references Caldwell, J., & Kwan, Y. Y. (2003). On the perturbation method for the Stefan problem with time-dependent boundary conditions. International Journal of Heat and Mass Transfer, 46(8), 1497-1501. doi:10.1016/s0017-9310(02)00415-5 es_ES
dc.description.references Stephan, K., & Holzknecht, B. (1976). Die asymptotischen lösungen für vorgänge des erstarrens. International Journal of Heat and Mass Transfer, 19(6), 597-602. doi:10.1016/0017-9310(76)90042-9 es_ES
dc.description.references Savović, S., & Caldwell, J. (2003). Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions. International Journal of Heat and Mass Transfer, 46(15), 2911-2916. doi:10.1016/s0017-9310(03)00050-4 es_ES
dc.description.references Kutluay, S., Bahadir, A. R., & Özdeş, A. (1997). The numerical solution of one-phase classical Stefan problem. Journal of Computational and Applied Mathematics, 81(1), 135-144. doi:10.1016/s0377-0427(97)00034-4 es_ES
dc.description.references Asaithambi, N. S. (1997). A variable time step Galerkin method for a one-dimensional Stefan problem. Applied Mathematics and Computation, 81(2-3), 189-200. doi:10.1016/0096-3003(95)00329-0 es_ES
dc.description.references Landau, H. G. (1950). Heat conduction in a melting solid. Quarterly of Applied Mathematics, 8(1), 81-94. doi:10.1090/qam/33441 es_ES
dc.description.references Churchill, S. W., & Gupta, J. P. (1977). Approximations for conduction with freezing or melting. International Journal of Heat and Mass Transfer, 20(11), 1251-1253. doi:10.1016/0017-9310(77)90134-x es_ES
dc.description.references Kutluay, S., & Esen, A. (2004). An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition. Applied Mathematics and Computation, 150(1), 59-67. doi:10.1016/s0096-3003(03)00197-8 es_ES
dc.description.references Esen, A., & Kutluay, S. (2004). A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method. Applied Mathematics and Computation, 148(2), 321-329. doi:10.1016/s0096-3003(02)00846-9 es_ES
dc.description.references Mitchell, S. L., & Vynnycky, M. (2016). On the accurate numerical solution of a two-phase Stefan problem with phase formation and depletion. Journal of Computational and Applied Mathematics, 300, 259-274. doi:10.1016/j.cam.2015.12.021 es_ES
dc.description.references Meek, P. C., & Norbury, J. (1984). Nonlinear Moving Boundary Problems and a Keller Box Scheme. SIAM Journal on Numerical Analysis, 21(5), 883-893. doi:10.1137/0721057 es_ES
dc.description.references Tarzia, D. (2017). Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions. Thermal Science, 21(1 Part A), 187-197. doi:10.2298/tsci140607003t es_ES
dc.description.references Plemmons, R. J. (1977). M-matrix characterizations.I—nonsingular M-matrices. Linear Algebra and its Applications, 18(2), 175-188. doi:10.1016/0024-3795(77)90073-8 es_ES
dc.description.references Axelsson, O. (1994). Iterative Solution Methods. doi:10.1017/cbo9780511624100 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem