Mostrar el registro sencillo del ítem
dc.contributor.author | Piqueras, Miguel A. | es_ES |
dc.contributor.author | Company Rossi, Rafael | es_ES |
dc.contributor.author | Jódar Sánchez, Lucas Antonio | es_ES |
dc.date.accessioned | 2021-02-20T04:31:17Z | |
dc.date.available | 2021-02-20T04:31:17Z | |
dc.date.issued | 2020-09-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161982 | |
dc.description.abstract | [EN] The two-phase Stefan problems with phase formation and depletion are special cases ofmoving boundary problemswith interest in science and industry. In this work, we study a solidification problem, introducing a front-fixing transformation. The resulting non-linear partial differential system involves singularities, both at the beginning of the freezing process and when the depletion is complete, that are treated with special attention in the numerical modelling. The problem is decomposed in three stages, in which implicit and explicit finite difference schemes are used. Numerical analysis reveals qualitative properties of the numerical solution spatial monotonicity of both solid and liquid temperatures and the evolution of the solidification front. Numerical experiments illustrate the behaviour of the temperatures profiles with time, as well as the dynamics of the solidification front. | es_ES |
dc.description.sponsorship | Ministerio de Ciencia, Innovacion y Universidades, Grant/Award Number: MTM2017-89664-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Finite difference methods | es_ES |
dc.subject | Non-linear partial differential system | es_ES |
dc.subject | Numerical analysis | es_ES |
dc.subject | Numerical modelling | es_ES |
dc.subject | Two-phase Stefan problem | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Solving two-phase freezing Stefan problems: Stability and monotonicity | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.5787 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Piqueras, MA.; Company Rossi, R.; Jódar Sánchez, LA. (2020). Solving two-phase freezing Stefan problems: Stability and monotonicity. Mathematical Methods in the Applied Sciences. 43(14):7948-7960. https://doi.org/10.1002/mma.5787 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.5787 | es_ES |
dc.description.upvformatpinicio | 7948 | es_ES |
dc.description.upvformatpfin | 7960 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\416903 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Schmidt, A. (1996). Computation of Three Dimensional Dendrites with Finite Elements. Journal of Computational Physics, 125(2), 293-312. doi:10.1006/jcph.1996.0095 | es_ES |
dc.description.references | Singh, S., & Bhargava, R. (2014). Simulation of Phase Transition During Cryosurgical Treatment of a Tumor Tissue Loaded With Nanoparticles Using Meshfree Approach. Journal of Heat Transfer, 136(12). doi:10.1115/1.4028730 | es_ES |
dc.description.references | Company, R., Egorova, V. N., & Jódar, L. (2014). Solving American Option Pricing Models by the Front Fixing Method: Numerical Analysis and Computing. Abstract and Applied Analysis, 2014, 1-9. doi:10.1155/2014/146745 | es_ES |
dc.description.references | Griewank, P. J., & Notz, D. (2013). Insights into brine dynamics and sea ice desalination from a 1-D model study of gravity drainage. Journal of Geophysical Research: Oceans, 118(7), 3370-3386. doi:10.1002/jgrc.20247 | es_ES |
dc.description.references | Javierre, E., Vuik, C., Vermolen, F. J., & van der Zwaag, S. (2006). A comparison of numerical models for one-dimensional Stefan problems. Journal of Computational and Applied Mathematics, 192(2), 445-459. doi:10.1016/j.cam.2005.04.062 | es_ES |
dc.description.references | Briozzo, A. C., Natale, M. F., & Tarzia, D. A. (2007). Explicit solutions for a two-phase unidimensional Lamé–Clapeyron–Stefan problem with source terms in both phases. Journal of Mathematical Analysis and Applications, 329(1), 145-162. doi:10.1016/j.jmaa.2006.05.083 | es_ES |
dc.description.references | Caldwell, J., & Chan, C.-C. (2000). Spherical solidification by the enthalpy method and the heat balance integral method. Applied Mathematical Modelling, 24(1), 45-53. doi:10.1016/s0307-904x(99)00031-1 | es_ES |
dc.description.references | Chantasiriwan, S., Johansson, B. T., & Lesnic, D. (2009). The method of fundamental solutions for free surface Stefan problems. Engineering Analysis with Boundary Elements, 33(4), 529-538. doi:10.1016/j.enganabound.2008.08.010 | es_ES |
dc.description.references | Hon, Y. C., & Li, M. (2008). A computational method for inverse free boundary determination problem. International Journal for Numerical Methods in Engineering, 73(9), 1291-1309. doi:10.1002/nme.2122 | es_ES |
dc.description.references | RIZWAN-UDDIN. (1999). A Nodal Method for Phase Change Moving Boundary Problems. International Journal of Computational Fluid Dynamics, 11(3-4), 211-221. doi:10.1080/10618569908940875 | es_ES |
dc.description.references | Caldwell, J., & Kwan, Y. Y. (2003). On the perturbation method for the Stefan problem with time-dependent boundary conditions. International Journal of Heat and Mass Transfer, 46(8), 1497-1501. doi:10.1016/s0017-9310(02)00415-5 | es_ES |
dc.description.references | Stephan, K., & Holzknecht, B. (1976). Die asymptotischen lösungen für vorgänge des erstarrens. International Journal of Heat and Mass Transfer, 19(6), 597-602. doi:10.1016/0017-9310(76)90042-9 | es_ES |
dc.description.references | Savović, S., & Caldwell, J. (2003). Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions. International Journal of Heat and Mass Transfer, 46(15), 2911-2916. doi:10.1016/s0017-9310(03)00050-4 | es_ES |
dc.description.references | Kutluay, S., Bahadir, A. R., & Özdeş, A. (1997). The numerical solution of one-phase classical Stefan problem. Journal of Computational and Applied Mathematics, 81(1), 135-144. doi:10.1016/s0377-0427(97)00034-4 | es_ES |
dc.description.references | Asaithambi, N. S. (1997). A variable time step Galerkin method for a one-dimensional Stefan problem. Applied Mathematics and Computation, 81(2-3), 189-200. doi:10.1016/0096-3003(95)00329-0 | es_ES |
dc.description.references | Landau, H. G. (1950). Heat conduction in a melting solid. Quarterly of Applied Mathematics, 8(1), 81-94. doi:10.1090/qam/33441 | es_ES |
dc.description.references | Churchill, S. W., & Gupta, J. P. (1977). Approximations for conduction with freezing or melting. International Journal of Heat and Mass Transfer, 20(11), 1251-1253. doi:10.1016/0017-9310(77)90134-x | es_ES |
dc.description.references | Kutluay, S., & Esen, A. (2004). An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition. Applied Mathematics and Computation, 150(1), 59-67. doi:10.1016/s0096-3003(03)00197-8 | es_ES |
dc.description.references | Esen, A., & Kutluay, S. (2004). A numerical solution of the Stefan problem with a Neumann-type boundary condition by enthalpy method. Applied Mathematics and Computation, 148(2), 321-329. doi:10.1016/s0096-3003(02)00846-9 | es_ES |
dc.description.references | Mitchell, S. L., & Vynnycky, M. (2016). On the accurate numerical solution of a two-phase Stefan problem with phase formation and depletion. Journal of Computational and Applied Mathematics, 300, 259-274. doi:10.1016/j.cam.2015.12.021 | es_ES |
dc.description.references | Meek, P. C., & Norbury, J. (1984). Nonlinear Moving Boundary Problems and a Keller Box Scheme. SIAM Journal on Numerical Analysis, 21(5), 883-893. doi:10.1137/0721057 | es_ES |
dc.description.references | Tarzia, D. (2017). Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions. Thermal Science, 21(1 Part A), 187-197. doi:10.2298/tsci140607003t | es_ES |
dc.description.references | Plemmons, R. J. (1977). M-matrix characterizations.I—nonsingular M-matrices. Linear Algebra and its Applications, 18(2), 175-188. doi:10.1016/0024-3795(77)90073-8 | es_ES |
dc.description.references | Axelsson, O. (1994). Iterative Solution Methods. doi:10.1017/cbo9780511624100 | es_ES |