- -

Survival of Lactobacillus salivarius CECT 4063 and Stability of Antioxidant Compounds in Dried Apple Snacks as Affected by the Water Activity, the Addition of Trehalose and High Pressure Homogenization

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Survival of Lactobacillus salivarius CECT 4063 and Stability of Antioxidant Compounds in Dried Apple Snacks as Affected by the Water Activity, the Addition of Trehalose and High Pressure Homogenization

Show full item record

Burca-Busaga, CG.; Betoret Valls, N.; Seguí Gil, L.; Betoret, E.; Barrera Puigdollers, C. (2020). Survival of Lactobacillus salivarius CECT 4063 and Stability of Antioxidant Compounds in Dried Apple Snacks as Affected by the Water Activity, the Addition of Trehalose and High Pressure Homogenization. Microorganisms. 8(8):1-15. https://doi.org/10.3390/microorganisms8081095

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162095

Files in this item

Item Metadata

Title: Survival of Lactobacillus salivarius CECT 4063 and Stability of Antioxidant Compounds in Dried Apple Snacks as Affected by the Water Activity, the Addition of Trehalose and High Pressure Homogenization
Author: Burca-Busaga, Cristina Gabriela Betoret Valls, Noelia Seguí Gil, Lucía Betoret, Ester Barrera Puigdollers, Cristina
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Issued date:
Abstract:
[EN] Survival of probiotic microorganisms in dried foods is optimal for water activity (a(w)) values between 0.1 and 0.3. Encapsulating and adding low-molecular weight additives can enhance probiotic viability in ...[+]
Subjects: Lactobacillus salivarius spp. salivarius , Water activity , Trehalose , High pressure homogenization , Antioxidants , Hot air drying , Freeze-drying
Copyrigths: Reconocimiento (by)
Source:
Microorganisms. (eissn: 2076-2607 )
DOI: 10.3390/microorganisms8081095
Publisher:
MDPI
Publisher version: https://doi.org/10.3390/microorganisms8081095
Project ID:
GENERALITAT VALENCIANA/GV/2015/066
Thanks:
This research was funded by Generalitat Valenciana, project reference GV/2015/066 entitled "Mejora de la calidad functional de un snack con efecto probiotico y antioxidante mediante la incorporacion de trehalosa y la ...[+]
Type: Artículo

References

Day, L., Seymour, R. B., Pitts, K. F., Konczak, I., & Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science & Technology, 20(9), 388-395. doi:10.1016/j.tifs.2008.05.002

Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal, 3(1). doi:10.1186/1475-2891-3-5

Fito, P., Chiralt, A., Betoret, N., Gras, M., Cháfer, M., Martı́nez-Monzó, J., … Vidal, D. (2001). Vacuum impregnation and osmotic dehydration in matrix engineering. Journal of Food Engineering, 49(2-3), 175-183. doi:10.1016/s0260-8774(00)00220-x [+]
Day, L., Seymour, R. B., Pitts, K. F., Konczak, I., & Lundin, L. (2009). Incorporation of functional ingredients into foods. Trends in Food Science & Technology, 20(9), 388-395. doi:10.1016/j.tifs.2008.05.002

Boyer, J., & Liu, R. H. (2004). Apple phytochemicals and their health benefits. Nutrition Journal, 3(1). doi:10.1186/1475-2891-3-5

Fito, P., Chiralt, A., Betoret, N., Gras, M., Cháfer, M., Martı́nez-Monzó, J., … Vidal, D. (2001). Vacuum impregnation and osmotic dehydration in matrix engineering. Journal of Food Engineering, 49(2-3), 175-183. doi:10.1016/s0260-8774(00)00220-x

Assis, F. R., Rodrigues, L. G. G., Tribuzi, G., de Souza, P. G., Carciofi, B. A. M., & Laurindo, J. B. (2019). Fortified apple (Malus spp., var. Fuji) snacks by vacuum impregnation of calcium lactate and convective drying. LWT, 113, 108298. doi:10.1016/j.lwt.2019.108298

Genevois, C., de Escalada Pla, M., & Flores, S. (2017). Novel strategies for fortifying vegetable matrices with iron and Lactobacillus casei simultaneously. LWT - Food Science and Technology, 79, 34-41. doi:10.1016/j.lwt.2017.01.019

Betoret, E., Sentandreu, E., Betoret, N., Codoñer-Franch, P., Valls-Bellés, V., & Fito, P. (2012). Technological development and functional properties of an apple snack rich in flavonoid from mandarin juice. Innovative Food Science & Emerging Technologies, 16, 298-304. doi:10.1016/j.ifset.2012.07.003

Akman, P. K., Uysal, E., Ozkaya, G. U., Tornuk, F., & Durak, M. Z. (2019). Development of probiotic carrier dried apples for consumption as snack food with the impregnation of Lactobacillus paracasei. LWT, 103, 60-68. doi:10.1016/j.lwt.2018.12.070

Betoret, E., Betoret, N., Arilla, A., Bennár, M., Barrera, C., Codoñer, P., & Fito, P. (2012). No invasive methodology to produce a probiotic low humid apple snack with potential effect against Helicobacter pylori. Journal of Food Engineering, 110(2), 289-293. doi:10.1016/j.jfoodeng.2011.04.027

CUI, L., NIU, L., LI, D., LIU, C., LIU, Y., LIU, C., & SONG, J. (2018). Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks. Journal of Integrative Agriculture, 17(1), 247-255. doi:10.1016/s2095-3119(17)61742-8

Roobab, U., Batool, Z., Manzoor, M. F., Shabbir, M. A., Khan, M. R., & Aadil, R. M. (2020). Sources, formulations, advanced delivery and health benefits of probiotics. Current Opinion in Food Science, 32, 17-28. doi:10.1016/j.cofs.2020.01.003

Passot, S., Cenard, S., Douania, I., Tréléa, I. C., & Fonseca, F. (2012). Critical water activity and amorphous state for optimal preservation of lyophilised lactic acid bacteria. Food Chemistry, 132(4), 1699-1705. doi:10.1016/j.foodchem.2011.06.012

Vesterlund, S., Salminen, K., & Salminen, S. (2012). Water activity in dry foods containing live probiotic bacteria should be carefully considered: A case study with Lactobacillus rhamnosus GG in flaxseed. International Journal of Food Microbiology, 157(2), 319-321. doi:10.1016/j.ijfoodmicro.2012.05.016

Golowczyc, M. A., Gerez, C. L., Silva, J., Abraham, A. G., De Antoni, G. L., & Teixeira, P. (2010). Survival of spray-dried Lactobacillus kefir is affected by different protectants and storage conditions. Biotechnology Letters, 33(4), 681-686. doi:10.1007/s10529-010-0491-6

Nualkaekul, S., & Charalampopoulos, D. (2011). Survival of Lactobacillus plantarum in model solutions and fruit juices. International Journal of Food Microbiology, 146(2), 111-117. doi:10.1016/j.ijfoodmicro.2011.01.040

Weinbreck, F., Bodnár, I., & Marco, M. L. (2010). Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? International Journal of Food Microbiology, 136(3), 364-367. doi:10.1016/j.ijfoodmicro.2009.11.004

Miao, S., Mills, S., Stanton, C., Fitzgerald, G. F., Roos, Y., & Ross, R. P. (2008). Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Science and Technology, 88(1), 19-30. doi:10.1051/dst:2007003

Ester, B., Noelia, B., Laura, C.-J., Francesca, P., Cristina, B., Rosalba, L., & Marco, D. R. (2019). Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT, 111, 883-888. doi:10.1016/j.lwt.2019.05.088

Bagad, M., Pande, R., Dubey, V., & Ghosh, A. R. (2017). Survivability of freeze-dried probiotic Pediococcus pentosaceus strains GS4, GS17 and Lactobacillus gasseri (ATCC 19992) during storage with commonly used pharmaceutical excipients within a period of 120 days. Asian Pacific Journal of Tropical Biomedicine, 7(10), 921-929. doi:10.1016/j.apjtb.2017.09.005

Lapsiri, W., Bhandari, B., & Wanchaitanawong, P. (2012). Viability ofLactobacillus plantarumTISTR 2075 in Different Protectants during Spray Drying and Storage. Drying Technology, 30(13), 1407-1412. doi:10.1080/07373937.2012.684226

Oldenhof, H., Wolkers, W. F., Fonseca, F., Passot, S., & Marin, M. (2008). Effect of Sucrose and Maltodextrin on the Physical Properties and Survival of Air-Dried Lactobacillus bulgaricus: An in Situ Fourier Transform Infrared Spectroscopy Study. Biotechnology Progress, 21(3), 885-892. doi:10.1021/bp049559j

Barrera, C., Burca, C., Betoret, E., García‐Hernández, J., Hernández, M., & Betoret, N. (2019). Improving antioxidant properties and probiotic effect of clementine juice inoculated with Lactobacillus salivarius spp. salivarius (CECT 4063) by trehalose addition and/or sublethal homogenisation. International Journal of Food Science & Technology, 54(6), 2109-2122. doi:10.1111/ijfs.14116

Betoret, E., Calabuig-Jiménez, L., Patrignani, F., Lanciotti, R., & Dalla Rosa, M. (2017). Effect of high pressure processing and trehalose addition on functional properties of mandarin juice enriched with probiotic microorganisms. LWT - Food Science and Technology, 85, 418-422. doi:10.1016/j.lwt.2016.10.036

Luximon-Ramma, A., Bahorun, T., Crozier, A., Zbarsky, V., Datla, K. P., Dexter, D. T., & Aruoma, O. I. (2005). Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Research International, 38(4), 357-367. doi:10.1016/j.foodres.2004.10.005

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5

Chen, Y.-S., Srionnual, S., Onda, T., & Yanagida, F. (2007). Effects of prebiotic oligosaccharides and trehalose on growth and production of bacteriocins by lactic acid bacteria. Letters in Applied Microbiology, 45(2), 190-193. doi:10.1111/j.1472-765x.2007.02167.x

Li, C., Liu, L. B., & Liu, N. (2011). Effects of carbon sources and lipids on freeze-drying survival of Lactobacillus bulgaricus in growth media. Annals of Microbiology, 62(3), 949-956. doi:10.1007/s13213-011-0332-4

Betoret, N., Puente, L., Dı́az, M. ., Pagán, M. ., Garcı́a, M. ., Gras, M. ., … Fito, P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56(2-3), 273-277. doi:10.1016/s0260-8774(02)00268-6

Santivarangkna, C., Kulozik, U., & Foerst, P. (2007). Alternative Drying Processes for the Industrial Preservation of Lactic Acid Starter Cultures. Biotechnology Progress, 23(2), 302-315. doi:10.1021/bp060268f

Zayed, G., & Roos, Y. H. (2004). Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochemistry, 39(9), 1081-1086. doi:10.1016/s0032-9592(03)00222-x

Betoret, E., Betoret, N., Rocculi, P., & Dalla Rosa, M. (2015). Strategies to improve food functionality: Structure–property relationships on high pressures homogenization, vacuum impregnation and drying technologies. Trends in Food Science & Technology, 46(1), 1-12. doi:10.1016/j.tifs.2015.07.006

Kets, E., Teunissen, P., & de Bont, J. (1996). Effect of compatible solutes on survival of lactic Acid bacteria subjected to drying. Applied and Environmental Microbiology, 62(1), 259-261. doi:10.1128/aem.62.1.259-261.1996

Betoret, E., Betoret, N., Carbonell, J. V., & Fito, P. (2009). Effects of pressure homogenization on particle size and the functional properties of citrus juices. Journal of Food Engineering, 92(1), 18-23. doi:10.1016/j.jfoodeng.2008.10.028

Kechagia, M., Basoulis, D., Konstantopoulou, S., Dimitriadi, D., Gyftopoulou, K., Skarmoutsou, N., & Fakiri, E. M. (2013). Health Benefits of Probiotics: A Review. ISRN Nutrition, 2013, 1-7. doi:10.5402/2013/481651

Vuthijumnok, J. (2013). Effect of freeze-drying and extraction solvents on the total phenolic contents, total flavonoids and antioxidant activity of different Rabbiteye blueberry genotypes grown in New Zealand. IOSR Journal of Pharmacy and Biological Sciences, 8(1), 42-48. doi:10.9790/3008-0814248

Heredia, A., Peinado, I., Barrera, C., & Grau, A. A. (2009). Influence of process variables on colour changes, carotenoids retention and cellular tissue alteration of cherry tomato during osmotic dehydration. Journal of Food Composition and Analysis, 22(4), 285-294. doi:10.1016/j.jfca.2008.11.018

Seguí, L., Calabuig-Jiménez, L., Betoret, N., & Fito, P. (2015). Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. International Journal of Food Science & Technology, 50(12), 2579-2588. doi:10.1111/ijfs.12926

Vega-Gálvez, A., Ah-Hen, K., Chacana, M., Vergara, J., Martínez-Monzó, J., García-Segovia, P., … Di Scala, K. (2012). Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices. Food Chemistry, 132(1), 51-59. doi:10.1016/j.foodchem.2011.10.029

Kurtmann, L., Carlsen, C. U., Risbo, J., & Skibsted, L. H. (2009). Storage stability of freeze–dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiology, 58(2), 175-180. doi:10.1016/j.cryobiol.2008.12.001

Barbosa, J., Borges, S., & Teixeira, P. (2015). Influence of sub-lethal stresses on the survival of lactic acid bacteria after spray-drying in orange juice. Food Microbiology, 52, 77-83. doi:10.1016/j.fm.2015.06.010

Lim, E. M., Ehrlich, S. D., & Maguin, E. (2000). Identification of stress-inducible proteins inLactobacillus delbrueckii subsp.bulgaricus. Electrophoresis, 21(12), 2557-2561. doi:10.1002/1522-2683(20000701)21:12<2557::aid-elps2557>3.0.co;2-b

Kilstrup, M., Jacobsen, S., Hammer, K., & Vogensen, F. K. (1997). Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Applied and Environmental Microbiology, 63(5), 1826-1837. doi:10.1128/aem.63.5.1826-1837.1997

Patrignani, F., & Lanciotti, R. (2016). Applications of High and Ultra High Pressure Homogenization for Food Safety. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01132

Piretti, M. V., Gallerani, G., & Brodnik, U. (1996). Polyphenol polymerisation involvement in apple superficial scald. Postharvest Biology and Technology, 8(1), 11-18. doi:10.1016/0925-5214(95)00056-9

Ma, Y., & Huang, H. (2014). Characterisation and comparison of phenols, flavonoids and isoflavones of soymilk and their correlations with antioxidant activity. International Journal of Food Science & Technology, 49(10), 2290-2298. doi:10.1111/ijfs.12545

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record