- -

High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability

Mostrar el registro completo del ítem

Mesa, J.; Hinestroza-Córdoba, LI.; Barrera Puigdollers, C.; Seguí Gil, L.; Betoret, E.; Betoret Valls, N. (2020). High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules. 25(14):1-19. https://doi.org/10.3390/molecules25143305

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162096

Ficheros en el ítem

Metadatos del ítem

Título: High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability
Autor: Mesa, José Hinestroza-Córdoba, Leidy Indira Barrera Puigdollers, Cristina Seguí Gil, Lucía Betoret, Ester Betoret Valls, Noelia
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food ...[+]
Palabras clave: High homogenization pressure , Food functionality , Bioactive components , Agri-food waste , Sustainability
Derechos de uso: Reconocimiento (by)
Fuente:
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules25143305
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/molecules25143305
Código del Proyecto:
info:eu-repo/grantAgreement/COLCIENCIAS//BPIN 2013000100284/
info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F049/
Agradecimientos:
This research and APC were funded by Generalitat Valenciana, Project AICO/2017/049. The authors thank the research project "Fortalecimiento de los Encadenamientos Productivos de las Subregiones del Chocó" BPIN 2013000100284 ...[+]
Tipo: Artículo

References

BEVILACQUA, A., CAMPANIELLO, D., SPERANZA, B., ALTIERI, C., SINIGAGLIA, M., & CORBO, M. R. (2019). Two Nonthermal Technologies for Food Safety and Quality—Ultrasound and High Pressure Homogenization: Effects on Microorganisms, Advances, and Possibilities: A Review. Journal of Food Protection, 82(12), 2049-2064. doi:10.4315/0362-028x.jfp-19-059

Picart-Palmade, L., Cunault, C., Chevalier-Lucia, D., Belleville, M.-P., & Marchesseau, S. (2019). Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Frontiers in Nutrition, 5. doi:10.3389/fnut.2018.00130

Pandolfe, W. D. (1982). Development of the New Gaulin Micro-Gap™ Homogenizing Valve. Journal of Dairy Science, 65(10), 2035-2044. doi:10.3168/jds.s0022-0302(82)82456-9 [+]
BEVILACQUA, A., CAMPANIELLO, D., SPERANZA, B., ALTIERI, C., SINIGAGLIA, M., & CORBO, M. R. (2019). Two Nonthermal Technologies for Food Safety and Quality—Ultrasound and High Pressure Homogenization: Effects on Microorganisms, Advances, and Possibilities: A Review. Journal of Food Protection, 82(12), 2049-2064. doi:10.4315/0362-028x.jfp-19-059

Picart-Palmade, L., Cunault, C., Chevalier-Lucia, D., Belleville, M.-P., & Marchesseau, S. (2019). Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Frontiers in Nutrition, 5. doi:10.3389/fnut.2018.00130

Pandolfe, W. D. (1982). Development of the New Gaulin Micro-Gap™ Homogenizing Valve. Journal of Dairy Science, 65(10), 2035-2044. doi:10.3168/jds.s0022-0302(82)82456-9

Patrignani, F., Siroli, L., Braschi, G., & Lanciotti, R. (2020). Combined use of natural antimicrobial based nanoemulsions and ultra high pressure homogenization to increase safety and shelf-life of apple juice. Food Control, 111, 107051. doi:10.1016/j.foodcont.2019.107051

Calligaris, S., Foschia, M., Bartolomeoli, I., Maifreni, M., & Manzocco, L. (2012). Study on the applicability of high-pressure homogenization for the production of banana juices. LWT - Food Science and Technology, 45(1), 117-121. doi:10.1016/j.lwt.2011.07.026

Tabanelli, G., Patrignani, F., Vinderola, G., Reinheimer, J. A., Gardini, F., & Lanciotti, R. (2013). Effect of sub-lethal high pressure homogenization treatments on the in vitro functional and biological properties of lactic acid bacteria. LWT - Food Science and Technology, 53(2), 580-586. doi:10.1016/j.lwt.2013.03.013

Guan, Y., Zhou, L., Bi, J., Yi, J., Liu, X., Chen, Q., … Zhou, M. (2016). Change of microbial and quality attributes of mango juice treated by high pressure homogenization combined with moderate inlet temperatures during storage. Innovative Food Science & Emerging Technologies, 36, 320-329. doi:10.1016/j.ifset.2016.07.009

Xia, X., Dai, Y., Wu, H., Liu, X., Wang, Y., Cao, J., & Zhou, J. (2019). Effects of pressure and multiple passes on the physicochemical and microbial characteristics of lupin‐based beverage treated with high‐pressure homogenization. Journal of Food Processing and Preservation, 43(4), e13912. doi:10.1111/jfpp.13912

Benjamin, O., & Gamrasni, D. (2020). Microbial, nutritional, and organoleptic quality of pomegranate juice following high‐pressure homogenization and low‐temperature pasteurization. Journal of Food Science, 85(3), 592-599. doi:10.1111/1750-3841.15032

Pinho, C. R. G., Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2011). Effect of Ultra High Pressure Homogenization on Alkaline Phosphatase and Lactoperoxidase Activity in Raw Skim Milk. Procedia Food Science, 1, 874-878. doi:10.1016/j.profoo.2011.09.132

Mercan, E., Sert, D., & Akın, N. (2018). Determination of powder flow properties of skim milk powder produced from high-pressure homogenization treated milk concentrates during storage. LWT, 97, 279-288. doi:10.1016/j.lwt.2018.07.002

Valencia-Flores, D. C., Hernández-Herrero, M., Guamis, B., & Ferragut, V. (2013). Comparing the Effects of Ultra-High-Pressure Homogenization and Conventional Thermal Treatments on the Microbiological, Physical, and Chemical Quality of Almond Beverages. Journal of Food Science, 78(2), E199-E205. doi:10.1111/1750-3841.12029

Bevilacqua, A., Casanova, F. P., Petruzzi, L., Sinigaglia, M., & Corbo, M. R. (2016). Using physical approaches for the attenuation of lactic acid bacteria in an organic rice beverage. Food Microbiology, 53, 1-8. doi:10.1016/j.fm.2015.08.005

Codina-Torrella, I., Guamis, B., Zamora, A., Quevedo, J. M., & Trujillo, A. J. (2018). Microbiological stabilization of tiger nuts’ milk beverage using ultra-high pressure homogenization. A preliminary study on microbial shelf-life extension. Food Microbiology, 69, 143-150. doi:10.1016/j.fm.2017.08.002

Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2011). Inactivation of Lactobacillus brevis in Beer Utilizing a Combination of High-Pressure Homogenization and Lysozyme Treatment. Journal of the Institute of Brewing, 117(4), 634-638. doi:10.1002/j.2050-0416.2011.tb00515.x

Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2013). High-pressure homogenization: a non-thermal process applied for inactivation of spoilage microorganisms in beer. Journal of the Institute of Brewing, 119(4), 237-241. doi:10.1002/jib.99

Comuzzo, P., Calligaris, S., Iacumin, L., Ginaldi, F., Palacios Paz, A. E., & Zironi, R. (2015). Potential of high pressure homogenization to induce autolysis of wine yeasts. Food Chemistry, 185, 340-348. doi:10.1016/j.foodchem.2015.03.129

Capra, M. L., Patrignani, F., Quiberoni, A. del L., Reinheimer, J. A., Lanciotti, R., & Guerzoni, M. E. (2009). Effect of high pressure homogenization on lactic acid bacteria phages and probiotic bacteria phages. International Dairy Journal, 19(5), 336-341. doi:10.1016/j.idairyj.2008.11.002

Patrignani, F., Vannini, L., Kamdem, S. L. S., Lanciotti, R., & Guerzoni, M. E. (2010). Potentialities of High-Pressure Homogenization to Inactivate Zygosaccharomyces bailii in Fruit Juices. Journal of Food Science, 75(2), M116-M120. doi:10.1111/j.1750-3841.2009.01508.x

Dos Santos Aguilar, J. G., Cristianini, M., & Sato, H. H. (2018). Modification of enzymes by use of high-pressure homogenization. Food Research International, 109, 120-125. doi:10.1016/j.foodres.2018.04.011

Bot, F., Calligaris, S., Cortella, G., Plazzotta, S., Nocera, F., & Anese, M. (2018). Study on high pressure homogenization and high power ultrasound effectiveness in inhibiting polyphenoloxidase activity in apple juice. Journal of Food Engineering, 221, 70-76. doi:10.1016/j.jfoodeng.2017.10.009

Plazzotta, S., & Manzocco, L. (2019). High-pressure homogenisation combined with blanching to turn lettuce waste into a physically stable juice. Innovative Food Science & Emerging Technologies, 52, 136-144. doi:10.1016/j.ifset.2018.11.008

Oliveira, M. M. de, Leite Júnior, B. R. de C., Tribst, A. A. L., & Cristianini, M. (2018). Use of high pressure homogenization to reduce milk proteolysis caused by Pseudomonas fluorescens protease. LWT, 92, 272-275. doi:10.1016/j.lwt.2018.02.052

Tribst, A. A. L., & Cristianini, M. (2012). Changes in commercial glucose oxidase activity by high pressure homogenization. Innovative Food Science & Emerging Technologies, 16, 355-360. doi:10.1016/j.ifset.2012.08.002

Dong, X., Zhao, M., Shi, J., Yang, B., Li, J., Luo, D., … Jiang, Y. (2011). Effects of combined high-pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins. Innovative Food Science & Emerging Technologies, 12(4), 478-483. doi:10.1016/j.ifset.2011.07.002

Tribst, A. A. L., Ribeiro, L. R., & Cristianini, M. (2017). Comparison of the effects of high pressure homogenization and high pressure processing on the enzyme activity and antimicrobial profile of lysozyme. Innovative Food Science & Emerging Technologies, 43, 60-67. doi:10.1016/j.ifset.2017.07.026

Iucci, L., Patrignani, F., Vallicelli, M., Guerzoni, M. E., & Lanciotti, R. (2007). Effects of high pressure homogenization on the activity of lysozyme and lactoferrin against Listeria monocytogenes. Food Control, 18(5), 558-565. doi:10.1016/j.foodcont.2006.01.005

Zhu, X., Cheng, Y., Chen, P., Peng, P., Liu, S., Li, D., & Ruan, R. (2016). Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels. Innovative Food Science & Emerging Technologies, 37, 91-97. doi:10.1016/j.ifset.2016.08.006

Xie, F., Zhang, W., Lan, X., Gong, S., Wu, J., & Wang, Z. (2018). Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydrate Polymers, 196, 474-482. doi:10.1016/j.carbpol.2018.05.061

Wang, W., Zhang, K., Li, C., Cheng, S., Zhou, J., & Wu, Z. (2018). A novel biodegradable film from edible mushroom ( F . velutipes ) by product: Microstructure, mechanical and barrier properties associated with the fiber morphology. Innovative Food Science & Emerging Technologies, 47, 153-160. doi:10.1016/j.ifset.2018.02.004

Wu, H., Xiao, D., Lu, J., Jiao, C., Li, S., Lei, Y., … Li, S. (2020). Effect of high-pressure homogenization on microstructure and properties of pomelo peel flour film-forming dispersions and their resultant films. Food Hydrocolloids, 102, 105628. doi:10.1016/j.foodhyd.2019.105628

Saricaoglu, F. T., Atalar, I., Yilmaz, V. A., Odabas, H. I., & Gul, O. (2019). Application of multi pass high pressure homogenization to improve stability, physical and bioactive properties of rosehip (Rosa canina L.) nectar. Food Chemistry, 282, 67-75. doi:10.1016/j.foodchem.2019.01.002

Plazzotta, S., & Manzocco, L. (2018). Effect of ultrasounds and high pressure homogenization on the extraction of antioxidant polyphenols from lettuce waste. Innovative Food Science & Emerging Technologies, 50, 11-19. doi:10.1016/j.ifset.2018.10.004

Huang, X., Tu, Z., Xiao, H., Li, Z., Zhang, Q., Wang, H., … Zhang, L. (2013). Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid. Food and Bioproducts Processing, 91(1), 1-6. doi:10.1016/j.fbp.2012.07.006

Rommi, K., Rahikainen, J., Vartiainen, J., Holopainen, U., Lahtinen, P., Honkapää, K., & Lantto, R. (2015). Potato peeling costreams as raw materials for biopolymer film preparation. Journal of Applied Polymer Science, 133(5), n/a-n/a. doi:10.1002/app.42862

Xie, Y., Ho, S.-H., Chen, C.-N. N., Chen, C.-Y., Jing, K., Ng, I.-S., … Lu, Y. (2016). Disruption of thermo-tolerant Desmodesmus sp. F51 in high pressure homogenization as a prelude to carotenoids extraction. Biochemical Engineering Journal, 109, 243-251. doi:10.1016/j.bej.2016.01.003

Saricaoglu, F. T., Gul, O., Besir, A., & Atalar, I. (2018). Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. Journal of Food Engineering, 233, 98-108. doi:10.1016/j.jfoodeng.2018.04.003

Zhang, W., Xie, F., Lan, X., Gong, S., & Wang, Z. (2018). Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. Journal of Food Engineering, 216, 90-97. doi:10.1016/j.jfoodeng.2017.07.032

Otoni, C. G., Lodi, B. D., Lorevice, M. V., Leitão, R. C., Ferreira, M. D., Moura, M. R. de, & Mattoso, L. H. C. (2018). Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Industrial Crops and Products, 121, 66-72. doi:10.1016/j.indcrop.2018.05.003

Xing, J., Cheng, Y., Chen, P., Shan, L., Ruan, R., Li, D., & Wang, L. (2019). Effect of high-pressure homogenization on the extraction of sulforaphane from broccoli (Brassica oleracea) seeds. Powder Technology, 358, 103-109. doi:10.1016/j.powtec.2018.12.010

Mustafa, W., Pataro, G., Ferrari, G., & Donsì, F. (2018). Novel approaches to oil structuring via the addition of high-pressure homogenized agri-food residues and water forming capillary bridges. Journal of Food Engineering, 236, 9-18. doi:10.1016/j.jfoodeng.2018.05.003

Griffin, S., Sarfraz, M., Farida, V., Nasim, M. J., Ebokaiwe, A. P., Keck, C. M., & Jacob, C. (2018). No time to waste organic waste: Nanosizing converts remains of food processing into refined materials. Journal of Environmental Management, 210, 114-121. doi:10.1016/j.jenvman.2017.12.084

Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2019). Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. International Journal of Biological Macromolecules, 123, 379-388. doi:10.1016/j.ijbiomac.2018.11.124

Jurić, S., Ferrari, G., Velikov, K. P., & Donsì, F. (2019). High-pressure homogenization treatment to recover bioactive compounds from tomato peels. Journal of Food Engineering, 262, 170-180. doi:10.1016/j.jfoodeng.2019.06.011

Zhang, Y., Shi, R., Xu, Y., Chen, M., Zhang, J., Gao, Q., & Li, J. (2020). Developing a stable high-performance soybean meal-based adhesive using a simple high-pressure homogenization technology. Journal of Cleaner Production, 256, 120336. doi:10.1016/j.jclepro.2020.120336

Sentandreu, E., Stinco, C. M., Vicario, I. M., Mapelli-Brahm, P., Navarro, J. L., & Meléndez-Martínez, A. J. (2020). High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. Journal of Cleaner Production, 262, 121325. doi:10.1016/j.jclepro.2020.121325

Quan, W., Tao, Y., Qie, X., Zeng, M., Qin, F., Chen, J., & He, Z. (2020). Effects of high-pressure homogenization, thermal processing, and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. Journal of Functional Foods, 64, 103633. doi:10.1016/j.jff.2019.103633

Alongi, M., Calligaris, S., & Anese, M. (2019). Fat concentration and high-pressure homogenization affect chlorogenic acid bioaccessibility and α-glucosidase inhibitory capacity of milk-based coffee beverages. Journal of Functional Foods, 58, 130-137. doi:10.1016/j.jff.2019.04.057

Betoret, E., Calabuig-Jiménez, L., Patrignani, F., Lanciotti, R., & Dalla Rosa, M. (2017). Effect of high pressure processing and trehalose addition on functional properties of mandarin juice enriched with probiotic microorganisms. LWT - Food Science and Technology, 85, 418-422. doi:10.1016/j.lwt.2016.10.036

Munekata, P. E. S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F. J., Mallikarjunan, K., … Lorenzo, J. M. (2020). Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods, 9(3), 288. doi:10.3390/foods9030288

Toro-Funes, N., Bosch-Fusté, J., Veciana-Nogués, M. T., & Vidal-Carou, M. C. (2014). Influence of Ultra-high-Pressure Homogenization Treatment on the Phytosterols, Tocopherols, and Polyamines of Almond Beverage. Journal of Agricultural and Food Chemistry, 62(39), 9539-9543. doi:10.1021/jf503324f

Atalar, I. (2019). Functional kefir production from high pressure homogenized hazelnut milk. LWT, 107, 256-263. doi:10.1016/j.lwt.2019.03.013

Kapoor, R., Pathak, S., Najmi, A. K., Aeri, V., & Panda, B. P. (2014). Processing of soy functional food using high pressure homogenization for improved nutritional and therapeutic benefits. Innovative Food Science & Emerging Technologies, 26, 490-497. doi:10.1016/j.ifset.2014.05.015

Jiang, T., Liao, W., & Charcosset, C. (2020). Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International, 132, 109035. doi:10.1016/j.foodres.2020.109035

Frank, K., Köhler, K., & Schuchmann, H. P. (2012). Stability of anthocyanins in high pressure homogenisation. Food Chemistry, 130(3), 716-719. doi:10.1016/j.foodchem.2011.07.086

Patrignani, F., Siroli, L., Serrazanetti, D. I., Braschi, G., Betoret, E., Reinheimer, J. A., & Lanciotti, R. (2017). Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Research International, 97, 250-257. doi:10.1016/j.foodres.2017.04.020

Calabuig-Jiménez, L., Betoret, E., Betoret, N., Patrignani, F., Barrera, C., Seguí, L., … Dalla Rosa, M. (2019). High pressures homogenization (HPH) to microencapsulate L. salivarius spp. salivarius in mandarin juice. Probiotic survival and in vitro digestion. Journal of Food Engineering, 240, 43-48. doi:10.1016/j.jfoodeng.2018.07.012

Bamba, B., Shi, J., Tranchant, C., Xue, S., Forney, C., Lim, L.-T., … Xu, G. (2018). Coencapsulation of Polyphenols and Anthocyanins from Blueberry Pomace by Double Emulsion Stabilized by Whey Proteins: Effect of Homogenization Parameters. Molecules, 23(10), 2525. doi:10.3390/molecules23102525

Cilek Tatar, B., Sumnu, G., & Oztop, M. (2019). Microcapsule characterization of phenolic powder obtained from strawberry pomace. Journal of Food Processing and Preservation, 43(6), e13892. doi:10.1111/jfpp.13892

Ester, B., Noelia, B., Laura, C.-J., Francesca, P., Cristina, B., Rosalba, L., & Marco, D. R. (2019). Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT, 111, 883-888. doi:10.1016/j.lwt.2019.05.088

Muramalla, T., & Aryana, K. J. (2011). Some low homogenization pressures improve certain probiotic characteristics of yogurt culture bacteria and Lactobacillus acidophilus LA-K. Journal of Dairy Science, 94(8), 3725-3738. doi:10.3168/jds.2010-3737

Tabanelli, G., Burns, P., Patrignani, F., Gardini, F., Lanciotti, R., Reinheimer, J., & Vinderola, G. (2012). Effect of a non-lethal High Pressure Homogenization treatment on the in vivo response of probiotic lactobacilli. Food Microbiology, 32(2), 302-307. doi:10.1016/j.fm.2012.07.004

Patrignani, F., Serrazanetti, D. I., Mathara, J. M., Siroli, L., Gardini, F., Holzapfel, W. H., & Lanciotti, R. (2015). Use of homogenisation pressure to improve quality and functionality of probiotic fermented milks containingLactobacillus rhamnosusBFE 5264. International Journal of Dairy Technology, 69(2), 262-271. doi:10.1111/1471-0307.12251

Burns, P. G., Patrignani, F., Tabanelli, G., Vinderola, G. C., Siroli, L., Reinheimer, J. A., … Lanciotti, R. (2015). Potential of high pressure homogenisation on probiotic Caciotta cheese quality and functionality. Journal of Functional Foods, 13, 126-136. doi:10.1016/j.jff.2014.12.037

Barrera, C., Burca, C., Betoret, E., García‐Hernández, J., Hernández, M., & Betoret, N. (2019). Improving antioxidant properties and probiotic effect of clementine juice inoculated with Lactobacillus salivarius spp. salivarius (CECT 4063) by trehalose addition and/or sublethal homogenisation. International Journal of Food Science & Technology, 54(6), 2109-2122. doi:10.1111/ijfs.14116

Siroli, L., Braschi, G., Rossi, S., Gottardi, D., Patrignani, F., & Lanciotti, R. (2020). Lactobacillus paracasei A13 and High-Pressure Homogenization Stress Response. Microorganisms, 8(3), 439. doi:10.3390/microorganisms8030439

LANCIOTTI, R., PATRIGNANI, F., IUCCI, L., SARACINO, P., & GUERZONI, M. (2007). Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species. Food Chemistry, 102(2), 542-550. doi:10.1016/j.foodchem.2006.06.043

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem