- -

High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mesa, José es_ES
dc.contributor.author Hinestroza-Córdoba, Leidy Indira es_ES
dc.contributor.author Barrera Puigdollers, Cristina es_ES
dc.contributor.author Seguí Gil, Lucía es_ES
dc.contributor.author Betoret, Ester es_ES
dc.contributor.author Betoret Valls, Noelia es_ES
dc.date.accessioned 2021-02-23T04:31:04Z
dc.date.available 2021-02-23T04:31:04Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162096
dc.description.abstract [EN] Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food applications derive from its effect on particle size, causing a more homogeneous distribution of fluid elements (particles, globules, droplets, aggregates, etc.) and favoring the release of intracellular components, and from its effect on the structure and configuration of chemical components such as polyphenols and macromolecules such as carbohydrates (fibers) and proteins (also microorganisms and enzymes). The challenges of the 21st century are leading the processed food industry towards the creation of food of high nutritional quality and the use of waste to obtain ingredients with specific properties. For this purpose, soft and nonthermal technologies such as high pressure homogenization have huge potential. The objective of this work is to review how the need to combine safety, functionality and sustainability in the food industry has conditioned the application of high-pressure homogenization technology in the last decade. es_ES
dc.description.sponsorship This research and APC were funded by Generalitat Valenciana, Project AICO/2017/049. The authors thank the research project "Fortalecimiento de los Encadenamientos Productivos de las Subregiones del Chocó" BPIN 2013000100284 Tecnológica del Chocó (in Spanish) by financial support to Leidy Indira Hinestroza-Córdoba. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject High homogenization pressure es_ES
dc.subject Food functionality es_ES
dc.subject Bioactive components es_ES
dc.subject Agri-food waste es_ES
dc.subject Sustainability es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules25143305 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COLCIENCIAS//BPIN 2013000100284/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2017%2F049/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.description.bibliographicCitation Mesa, J.; Hinestroza-Córdoba, LI.; Barrera Puigdollers, C.; Seguí Gil, L.; Betoret, E.; Betoret Valls, N. (2020). High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules. 25(14):1-19. https://doi.org/10.3390/molecules25143305 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules25143305 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 14 es_ES
dc.identifier.pmid 32708208 es_ES
dc.identifier.pmcid PMC7397014 es_ES
dc.relation.pasarela S\416407 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia es_ES
dc.description.references BEVILACQUA, A., CAMPANIELLO, D., SPERANZA, B., ALTIERI, C., SINIGAGLIA, M., & CORBO, M. R. (2019). Two Nonthermal Technologies for Food Safety and Quality—Ultrasound and High Pressure Homogenization: Effects on Microorganisms, Advances, and Possibilities: A Review. Journal of Food Protection, 82(12), 2049-2064. doi:10.4315/0362-028x.jfp-19-059 es_ES
dc.description.references Picart-Palmade, L., Cunault, C., Chevalier-Lucia, D., Belleville, M.-P., & Marchesseau, S. (2019). Potentialities and Limits of Some Non-thermal Technologies to Improve Sustainability of Food Processing. Frontiers in Nutrition, 5. doi:10.3389/fnut.2018.00130 es_ES
dc.description.references Pandolfe, W. D. (1982). Development of the New Gaulin Micro-Gap™ Homogenizing Valve. Journal of Dairy Science, 65(10), 2035-2044. doi:10.3168/jds.s0022-0302(82)82456-9 es_ES
dc.description.references Patrignani, F., Siroli, L., Braschi, G., & Lanciotti, R. (2020). Combined use of natural antimicrobial based nanoemulsions and ultra high pressure homogenization to increase safety and shelf-life of apple juice. Food Control, 111, 107051. doi:10.1016/j.foodcont.2019.107051 es_ES
dc.description.references Calligaris, S., Foschia, M., Bartolomeoli, I., Maifreni, M., & Manzocco, L. (2012). Study on the applicability of high-pressure homogenization for the production of banana juices. LWT - Food Science and Technology, 45(1), 117-121. doi:10.1016/j.lwt.2011.07.026 es_ES
dc.description.references Tabanelli, G., Patrignani, F., Vinderola, G., Reinheimer, J. A., Gardini, F., & Lanciotti, R. (2013). Effect of sub-lethal high pressure homogenization treatments on the in vitro functional and biological properties of lactic acid bacteria. LWT - Food Science and Technology, 53(2), 580-586. doi:10.1016/j.lwt.2013.03.013 es_ES
dc.description.references Guan, Y., Zhou, L., Bi, J., Yi, J., Liu, X., Chen, Q., … Zhou, M. (2016). Change of microbial and quality attributes of mango juice treated by high pressure homogenization combined with moderate inlet temperatures during storage. Innovative Food Science & Emerging Technologies, 36, 320-329. doi:10.1016/j.ifset.2016.07.009 es_ES
dc.description.references Xia, X., Dai, Y., Wu, H., Liu, X., Wang, Y., Cao, J., & Zhou, J. (2019). Effects of pressure and multiple passes on the physicochemical and microbial characteristics of lupin‐based beverage treated with high‐pressure homogenization. Journal of Food Processing and Preservation, 43(4), e13912. doi:10.1111/jfpp.13912 es_ES
dc.description.references Benjamin, O., & Gamrasni, D. (2020). Microbial, nutritional, and organoleptic quality of pomegranate juice following high‐pressure homogenization and low‐temperature pasteurization. Journal of Food Science, 85(3), 592-599. doi:10.1111/1750-3841.15032 es_ES
dc.description.references Pinho, C. R. G., Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2011). Effect of Ultra High Pressure Homogenization on Alkaline Phosphatase and Lactoperoxidase Activity in Raw Skim Milk. Procedia Food Science, 1, 874-878. doi:10.1016/j.profoo.2011.09.132 es_ES
dc.description.references Mercan, E., Sert, D., & Akın, N. (2018). Determination of powder flow properties of skim milk powder produced from high-pressure homogenization treated milk concentrates during storage. LWT, 97, 279-288. doi:10.1016/j.lwt.2018.07.002 es_ES
dc.description.references Valencia-Flores, D. C., Hernández-Herrero, M., Guamis, B., & Ferragut, V. (2013). Comparing the Effects of Ultra-High-Pressure Homogenization and Conventional Thermal Treatments on the Microbiological, Physical, and Chemical Quality of Almond Beverages. Journal of Food Science, 78(2), E199-E205. doi:10.1111/1750-3841.12029 es_ES
dc.description.references Bevilacqua, A., Casanova, F. P., Petruzzi, L., Sinigaglia, M., & Corbo, M. R. (2016). Using physical approaches for the attenuation of lactic acid bacteria in an organic rice beverage. Food Microbiology, 53, 1-8. doi:10.1016/j.fm.2015.08.005 es_ES
dc.description.references Codina-Torrella, I., Guamis, B., Zamora, A., Quevedo, J. M., & Trujillo, A. J. (2018). Microbiological stabilization of tiger nuts’ milk beverage using ultra-high pressure homogenization. A preliminary study on microbial shelf-life extension. Food Microbiology, 69, 143-150. doi:10.1016/j.fm.2017.08.002 es_ES
dc.description.references Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2011). Inactivation of Lactobacillus brevis in Beer Utilizing a Combination of High-Pressure Homogenization and Lysozyme Treatment. Journal of the Institute of Brewing, 117(4), 634-638. doi:10.1002/j.2050-0416.2011.tb00515.x es_ES
dc.description.references Franchi, M. A., Tribst, A. A. L., & Cristianini, M. (2013). High-pressure homogenization: a non-thermal process applied for inactivation of spoilage microorganisms in beer. Journal of the Institute of Brewing, 119(4), 237-241. doi:10.1002/jib.99 es_ES
dc.description.references Comuzzo, P., Calligaris, S., Iacumin, L., Ginaldi, F., Palacios Paz, A. E., & Zironi, R. (2015). Potential of high pressure homogenization to induce autolysis of wine yeasts. Food Chemistry, 185, 340-348. doi:10.1016/j.foodchem.2015.03.129 es_ES
dc.description.references Capra, M. L., Patrignani, F., Quiberoni, A. del L., Reinheimer, J. A., Lanciotti, R., & Guerzoni, M. E. (2009). Effect of high pressure homogenization on lactic acid bacteria phages and probiotic bacteria phages. International Dairy Journal, 19(5), 336-341. doi:10.1016/j.idairyj.2008.11.002 es_ES
dc.description.references Patrignani, F., Vannini, L., Kamdem, S. L. S., Lanciotti, R., & Guerzoni, M. E. (2010). Potentialities of High-Pressure Homogenization to Inactivate Zygosaccharomyces bailii in Fruit Juices. Journal of Food Science, 75(2), M116-M120. doi:10.1111/j.1750-3841.2009.01508.x es_ES
dc.description.references Dos Santos Aguilar, J. G., Cristianini, M., & Sato, H. H. (2018). Modification of enzymes by use of high-pressure homogenization. Food Research International, 109, 120-125. doi:10.1016/j.foodres.2018.04.011 es_ES
dc.description.references Bot, F., Calligaris, S., Cortella, G., Plazzotta, S., Nocera, F., & Anese, M. (2018). Study on high pressure homogenization and high power ultrasound effectiveness in inhibiting polyphenoloxidase activity in apple juice. Journal of Food Engineering, 221, 70-76. doi:10.1016/j.jfoodeng.2017.10.009 es_ES
dc.description.references Plazzotta, S., & Manzocco, L. (2019). High-pressure homogenisation combined with blanching to turn lettuce waste into a physically stable juice. Innovative Food Science & Emerging Technologies, 52, 136-144. doi:10.1016/j.ifset.2018.11.008 es_ES
dc.description.references Oliveira, M. M. de, Leite Júnior, B. R. de C., Tribst, A. A. L., & Cristianini, M. (2018). Use of high pressure homogenization to reduce milk proteolysis caused by Pseudomonas fluorescens protease. LWT, 92, 272-275. doi:10.1016/j.lwt.2018.02.052 es_ES
dc.description.references Tribst, A. A. L., & Cristianini, M. (2012). Changes in commercial glucose oxidase activity by high pressure homogenization. Innovative Food Science & Emerging Technologies, 16, 355-360. doi:10.1016/j.ifset.2012.08.002 es_ES
dc.description.references Dong, X., Zhao, M., Shi, J., Yang, B., Li, J., Luo, D., … Jiang, Y. (2011). Effects of combined high-pressure homogenization and enzymatic treatment on extraction yield, hydrolysis and function properties of peanut proteins. Innovative Food Science & Emerging Technologies, 12(4), 478-483. doi:10.1016/j.ifset.2011.07.002 es_ES
dc.description.references Tribst, A. A. L., Ribeiro, L. R., & Cristianini, M. (2017). Comparison of the effects of high pressure homogenization and high pressure processing on the enzyme activity and antimicrobial profile of lysozyme. Innovative Food Science & Emerging Technologies, 43, 60-67. doi:10.1016/j.ifset.2017.07.026 es_ES
dc.description.references Iucci, L., Patrignani, F., Vallicelli, M., Guerzoni, M. E., & Lanciotti, R. (2007). Effects of high pressure homogenization on the activity of lysozyme and lactoferrin against Listeria monocytogenes. Food Control, 18(5), 558-565. doi:10.1016/j.foodcont.2006.01.005 es_ES
dc.description.references Zhu, X., Cheng, Y., Chen, P., Peng, P., Liu, S., Li, D., & Ruan, R. (2016). Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels. Innovative Food Science & Emerging Technologies, 37, 91-97. doi:10.1016/j.ifset.2016.08.006 es_ES
dc.description.references Xie, F., Zhang, W., Lan, X., Gong, S., Wu, J., & Wang, Z. (2018). Effects of high hydrostatic pressure and high pressure homogenization processing on characteristics of potato peel waste pectin. Carbohydrate Polymers, 196, 474-482. doi:10.1016/j.carbpol.2018.05.061 es_ES
dc.description.references Wang, W., Zhang, K., Li, C., Cheng, S., Zhou, J., & Wu, Z. (2018). A novel biodegradable film from edible mushroom ( F . velutipes ) by product: Microstructure, mechanical and barrier properties associated with the fiber morphology. Innovative Food Science & Emerging Technologies, 47, 153-160. doi:10.1016/j.ifset.2018.02.004 es_ES
dc.description.references Wu, H., Xiao, D., Lu, J., Jiao, C., Li, S., Lei, Y., … Li, S. (2020). Effect of high-pressure homogenization on microstructure and properties of pomelo peel flour film-forming dispersions and their resultant films. Food Hydrocolloids, 102, 105628. doi:10.1016/j.foodhyd.2019.105628 es_ES
dc.description.references Saricaoglu, F. T., Atalar, I., Yilmaz, V. A., Odabas, H. I., & Gul, O. (2019). Application of multi pass high pressure homogenization to improve stability, physical and bioactive properties of rosehip (Rosa canina L.) nectar. Food Chemistry, 282, 67-75. doi:10.1016/j.foodchem.2019.01.002 es_ES
dc.description.references Plazzotta, S., & Manzocco, L. (2018). Effect of ultrasounds and high pressure homogenization on the extraction of antioxidant polyphenols from lettuce waste. Innovative Food Science & Emerging Technologies, 50, 11-19. doi:10.1016/j.ifset.2018.10.004 es_ES
dc.description.references Huang, X., Tu, Z., Xiao, H., Li, Z., Zhang, Q., Wang, H., … Zhang, L. (2013). Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid. Food and Bioproducts Processing, 91(1), 1-6. doi:10.1016/j.fbp.2012.07.006 es_ES
dc.description.references Rommi, K., Rahikainen, J., Vartiainen, J., Holopainen, U., Lahtinen, P., Honkapää, K., & Lantto, R. (2015). Potato peeling costreams as raw materials for biopolymer film preparation. Journal of Applied Polymer Science, 133(5), n/a-n/a. doi:10.1002/app.42862 es_ES
dc.description.references Xie, Y., Ho, S.-H., Chen, C.-N. N., Chen, C.-Y., Jing, K., Ng, I.-S., … Lu, Y. (2016). Disruption of thermo-tolerant Desmodesmus sp. F51 in high pressure homogenization as a prelude to carotenoids extraction. Biochemical Engineering Journal, 109, 243-251. doi:10.1016/j.bej.2016.01.003 es_ES
dc.description.references Saricaoglu, F. T., Gul, O., Besir, A., & Atalar, I. (2018). Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. Journal of Food Engineering, 233, 98-108. doi:10.1016/j.jfoodeng.2018.04.003 es_ES
dc.description.references Zhang, W., Xie, F., Lan, X., Gong, S., & Wang, Z. (2018). Characteristics of pectin from black cherry tomato waste modified by dynamic high-pressure microfluidization. Journal of Food Engineering, 216, 90-97. doi:10.1016/j.jfoodeng.2017.07.032 es_ES
dc.description.references Otoni, C. G., Lodi, B. D., Lorevice, M. V., Leitão, R. C., Ferreira, M. D., Moura, M. R. de, & Mattoso, L. H. C. (2018). Optimized and scaled-up production of cellulose-reinforced biodegradable composite films made up of carrot processing waste. Industrial Crops and Products, 121, 66-72. doi:10.1016/j.indcrop.2018.05.003 es_ES
dc.description.references Xing, J., Cheng, Y., Chen, P., Shan, L., Ruan, R., Li, D., & Wang, L. (2019). Effect of high-pressure homogenization on the extraction of sulforaphane from broccoli (Brassica oleracea) seeds. Powder Technology, 358, 103-109. doi:10.1016/j.powtec.2018.12.010 es_ES
dc.description.references Mustafa, W., Pataro, G., Ferrari, G., & Donsì, F. (2018). Novel approaches to oil structuring via the addition of high-pressure homogenized agri-food residues and water forming capillary bridges. Journal of Food Engineering, 236, 9-18. doi:10.1016/j.jfoodeng.2018.05.003 es_ES
dc.description.references Griffin, S., Sarfraz, M., Farida, V., Nasim, M. J., Ebokaiwe, A. P., Keck, C. M., & Jacob, C. (2018). No time to waste organic waste: Nanosizing converts remains of food processing into refined materials. Journal of Environmental Management, 210, 114-121. doi:10.1016/j.jenvman.2017.12.084 es_ES
dc.description.references Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2019). Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr): Effect of cycles on their yield, physic-chemical, morphological and thermal behavior. International Journal of Biological Macromolecules, 123, 379-388. doi:10.1016/j.ijbiomac.2018.11.124 es_ES
dc.description.references Jurić, S., Ferrari, G., Velikov, K. P., & Donsì, F. (2019). High-pressure homogenization treatment to recover bioactive compounds from tomato peels. Journal of Food Engineering, 262, 170-180. doi:10.1016/j.jfoodeng.2019.06.011 es_ES
dc.description.references Zhang, Y., Shi, R., Xu, Y., Chen, M., Zhang, J., Gao, Q., & Li, J. (2020). Developing a stable high-performance soybean meal-based adhesive using a simple high-pressure homogenization technology. Journal of Cleaner Production, 256, 120336. doi:10.1016/j.jclepro.2020.120336 es_ES
dc.description.references Sentandreu, E., Stinco, C. M., Vicario, I. M., Mapelli-Brahm, P., Navarro, J. L., & Meléndez-Martínez, A. J. (2020). High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. Journal of Cleaner Production, 262, 121325. doi:10.1016/j.jclepro.2020.121325 es_ES
dc.description.references Quan, W., Tao, Y., Qie, X., Zeng, M., Qin, F., Chen, J., & He, Z. (2020). Effects of high-pressure homogenization, thermal processing, and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. Journal of Functional Foods, 64, 103633. doi:10.1016/j.jff.2019.103633 es_ES
dc.description.references Alongi, M., Calligaris, S., & Anese, M. (2019). Fat concentration and high-pressure homogenization affect chlorogenic acid bioaccessibility and α-glucosidase inhibitory capacity of milk-based coffee beverages. Journal of Functional Foods, 58, 130-137. doi:10.1016/j.jff.2019.04.057 es_ES
dc.description.references Betoret, E., Calabuig-Jiménez, L., Patrignani, F., Lanciotti, R., & Dalla Rosa, M. (2017). Effect of high pressure processing and trehalose addition on functional properties of mandarin juice enriched with probiotic microorganisms. LWT - Food Science and Technology, 85, 418-422. doi:10.1016/j.lwt.2016.10.036 es_ES
dc.description.references Munekata, P. E. S., Domínguez, R., Budaraju, S., Roselló-Soto, E., Barba, F. J., Mallikarjunan, K., … Lorenzo, J. M. (2020). Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods, 9(3), 288. doi:10.3390/foods9030288 es_ES
dc.description.references Toro-Funes, N., Bosch-Fusté, J., Veciana-Nogués, M. T., & Vidal-Carou, M. C. (2014). Influence of Ultra-high-Pressure Homogenization Treatment on the Phytosterols, Tocopherols, and Polyamines of Almond Beverage. Journal of Agricultural and Food Chemistry, 62(39), 9539-9543. doi:10.1021/jf503324f es_ES
dc.description.references Atalar, I. (2019). Functional kefir production from high pressure homogenized hazelnut milk. LWT, 107, 256-263. doi:10.1016/j.lwt.2019.03.013 es_ES
dc.description.references Kapoor, R., Pathak, S., Najmi, A. K., Aeri, V., & Panda, B. P. (2014). Processing of soy functional food using high pressure homogenization for improved nutritional and therapeutic benefits. Innovative Food Science & Emerging Technologies, 26, 490-497. doi:10.1016/j.ifset.2014.05.015 es_ES
dc.description.references Jiang, T., Liao, W., & Charcosset, C. (2020). Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International, 132, 109035. doi:10.1016/j.foodres.2020.109035 es_ES
dc.description.references Frank, K., Köhler, K., & Schuchmann, H. P. (2012). Stability of anthocyanins in high pressure homogenisation. Food Chemistry, 130(3), 716-719. doi:10.1016/j.foodchem.2011.07.086 es_ES
dc.description.references Patrignani, F., Siroli, L., Serrazanetti, D. I., Braschi, G., Betoret, E., Reinheimer, J. A., & Lanciotti, R. (2017). Microencapsulation of functional strains by high pressure homogenization for a potential use in fermented milk. Food Research International, 97, 250-257. doi:10.1016/j.foodres.2017.04.020 es_ES
dc.description.references Calabuig-Jiménez, L., Betoret, E., Betoret, N., Patrignani, F., Barrera, C., Seguí, L., … Dalla Rosa, M. (2019). High pressures homogenization (HPH) to microencapsulate L. salivarius spp. salivarius in mandarin juice. Probiotic survival and in vitro digestion. Journal of Food Engineering, 240, 43-48. doi:10.1016/j.jfoodeng.2018.07.012 es_ES
dc.description.references Bamba, B., Shi, J., Tranchant, C., Xue, S., Forney, C., Lim, L.-T., … Xu, G. (2018). Coencapsulation of Polyphenols and Anthocyanins from Blueberry Pomace by Double Emulsion Stabilized by Whey Proteins: Effect of Homogenization Parameters. Molecules, 23(10), 2525. doi:10.3390/molecules23102525 es_ES
dc.description.references Cilek Tatar, B., Sumnu, G., & Oztop, M. (2019). Microcapsule characterization of phenolic powder obtained from strawberry pomace. Journal of Food Processing and Preservation, 43(6), e13892. doi:10.1111/jfpp.13892 es_ES
dc.description.references Ester, B., Noelia, B., Laura, C.-J., Francesca, P., Cristina, B., Rosalba, L., & Marco, D. R. (2019). Probiotic survival and in vitro digestion of L. salivarius spp. salivarius encapsulated by high homogenization pressures and incorporated into a fruit matrix. LWT, 111, 883-888. doi:10.1016/j.lwt.2019.05.088 es_ES
dc.description.references Muramalla, T., & Aryana, K. J. (2011). Some low homogenization pressures improve certain probiotic characteristics of yogurt culture bacteria and Lactobacillus acidophilus LA-K. Journal of Dairy Science, 94(8), 3725-3738. doi:10.3168/jds.2010-3737 es_ES
dc.description.references Tabanelli, G., Burns, P., Patrignani, F., Gardini, F., Lanciotti, R., Reinheimer, J., & Vinderola, G. (2012). Effect of a non-lethal High Pressure Homogenization treatment on the in vivo response of probiotic lactobacilli. Food Microbiology, 32(2), 302-307. doi:10.1016/j.fm.2012.07.004 es_ES
dc.description.references Patrignani, F., Serrazanetti, D. I., Mathara, J. M., Siroli, L., Gardini, F., Holzapfel, W. H., & Lanciotti, R. (2015). Use of homogenisation pressure to improve quality and functionality of probiotic fermented milks containingLactobacillus rhamnosusBFE 5264. International Journal of Dairy Technology, 69(2), 262-271. doi:10.1111/1471-0307.12251 es_ES
dc.description.references Burns, P. G., Patrignani, F., Tabanelli, G., Vinderola, G. C., Siroli, L., Reinheimer, J. A., … Lanciotti, R. (2015). Potential of high pressure homogenisation on probiotic Caciotta cheese quality and functionality. Journal of Functional Foods, 13, 126-136. doi:10.1016/j.jff.2014.12.037 es_ES
dc.description.references Barrera, C., Burca, C., Betoret, E., García‐Hernández, J., Hernández, M., & Betoret, N. (2019). Improving antioxidant properties and probiotic effect of clementine juice inoculated with Lactobacillus salivarius spp. salivarius (CECT 4063) by trehalose addition and/or sublethal homogenisation. International Journal of Food Science & Technology, 54(6), 2109-2122. doi:10.1111/ijfs.14116 es_ES
dc.description.references Siroli, L., Braschi, G., Rossi, S., Gottardi, D., Patrignani, F., & Lanciotti, R. (2020). Lactobacillus paracasei A13 and High-Pressure Homogenization Stress Response. Microorganisms, 8(3), 439. doi:10.3390/microorganisms8030439 es_ES
dc.description.references LANCIOTTI, R., PATRIGNANI, F., IUCCI, L., SARACINO, P., & GUERZONI, M. (2007). Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species. Food Chemistry, 102(2), 542-550. doi:10.1016/j.foodchem.2006.06.043 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem