Mostrar el registro sencillo del ítem
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | El-Labany, S.K. | es_ES |
dc.contributor.author | Navarro-Quiles, A. | es_ES |
dc.contributor.author | Selim, Mustafa M. | es_ES |
dc.contributor.author | Slama, H. | es_ES |
dc.date.accessioned | 2021-02-23T04:31:16Z | |
dc.date.available | 2021-02-23T04:31:16Z | |
dc.date.issued | 2020-09-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162100 | |
dc.description.abstract | [EN] This paper provides a comprehensive probabilistic analysis of a full randomization of approximate SIR-type epidemiological models based on discrete-time Markov chain formulation. The randomization is performed by assuming that all input data (initial conditions, the contagion, and recovering rates involved in the transition matrix) are random variables instead of deterministic constants. In the first part of the paper, we determine explicit expressions for the so called first probability density function of each subpopulation identified as the corresponding states of the Markov chain (susceptible, infected, and recovered) in terms of the probability density function of each input random variable. Afterwards, we obtain the probability density functions of the times until a given proportion of the population remains susceptible, infected, and recovered, respectively. The theoretical analysis is completed by computing explicit expressions of important randomized epidemiological quantities, namely, the basic reproduction number, the effective reproduction number, and the herd immunity threshold. The study is conducted under very general assumptions and taking extensive advantage of the random variable transformation technique. The second part of the paper is devoted to apply our theoretical findings to describe the dynamics of the pandemic influenza in Egypt using simulated data excerpted from the literature. The simulations are complemented with valuable information, which is seldom displayed in epidemiological models. In spite of the nonlinear mathematical nature of SIR epidemiological model, our results show a strong agreement with the approximation via an appropriate randomized Markov chain. A justification in this regard is discussed. | es_ES |
dc.description.sponsorship | Spanish Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P; Generalitat Valenciana, Grant/Award Number: APOSTD/2019/128; Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | First probability density function | es_ES |
dc.subject | Random variable transformation technique | es_ES |
dc.subject | Randomized discrete-time Markov chains | es_ES |
dc.subject | Simulations | es_ES |
dc.subject | SIR epidemiological model | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A comprehensive probabilistic analysis of SIR-type epidemiological models based on full randomized Discrete-Time Markov Chain formulation with applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.6482 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F128/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cortés, J.; El-Labany, S.; Navarro-Quiles, A.; Selim, MM.; Slama, H. (2020). A comprehensive probabilistic analysis of SIR-type epidemiological models based on full randomized Discrete-Time Markov Chain formulation with applications. Mathematical Methods in the Applied Sciences. 43(14):8204-8222. https://doi.org/10.1002/mma.6482 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.6482 | es_ES |
dc.description.upvformatpinicio | 8204 | es_ES |
dc.description.upvformatpfin | 8222 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\407906 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Hamra, G., MacLehose, R., & Richardson, D. (2013). Markov Chain Monte Carlo: an introduction for epidemiologists. International Journal of Epidemiology, 42(2), 627-634. doi:10.1093/ije/dyt043 | es_ES |
dc.description.references | Becker, N. (1981). A General Chain Binomial Model for Infectious Diseases. Biometrics, 37(2), 251. doi:10.2307/2530415 | es_ES |
dc.description.references | Allen, L. J. S. (2010). An Introduction to Stochastic Processes with Applications to Biology. doi:10.1201/b12537 | es_ES |
dc.description.references | Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907 | es_ES |
dc.description.references | Brauer, F., & Castillo-Chávez, C. (2001). Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics. doi:10.1007/978-1-4757-3516-1 | es_ES |
dc.description.references | Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2018). Some results about randomized binary Markov chains: theory, computing and applications. International Journal of Computer Mathematics, 97(1-2), 141-156. doi:10.1080/00207160.2018.1440290 | es_ES |
dc.description.references | Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Randomizing the parameters of a Markov chain to model the stroke disease: A technical generalization of established computational methodologies towards improving real applications. Journal of Computational and Applied Mathematics, 324, 225-240. doi:10.1016/j.cam.2017.04.040 | es_ES |
dc.description.references | Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 24(1-3), 86-97. doi:10.1016/j.cnsns.2014.12.016 | es_ES |
dc.description.references | Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199-210. doi:10.1016/j.cnsns.2015.08.009 | es_ES |
dc.description.references | Slama, H., Hussein, A., El-Bedwhey, N. A., & Selim, M. M. (2019). An approximate probabilistic solution of a random SIR-type epidemiological model using RVT technique. Applied Mathematics and Computation, 361, 144-156. doi:10.1016/j.amc.2019.05.019 | es_ES |
dc.description.references | Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6 | es_ES |
dc.description.references | Kegan, B., & West, R. W. (2005). Modeling the simple epidemic with deterministic differential equations and random initial conditions. Mathematical Biosciences, 195(2), 179-193. doi:10.1016/j.mbs.2005.02.004 | es_ES |
dc.description.references | Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009 | es_ES |
dc.description.references | Van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288-303. doi:10.1016/j.idm.2017.06.002 | es_ES |
dc.description.references | Heffernan, J. ., Smith, R. ., & Wahl, L. . (2005). Perspectives on the basic reproductive ratio. Journal of The Royal Society Interface, 2(4), 281-293. doi:10.1098/rsif.2005.0042 | es_ES |
dc.description.references | Khalil, K. M., Abdel-Aziz, M., Nazmy, T. T., & Salem, A.-B. M. (2012). An Agent-Based Modeling for Pandemic Influenza in Egypt. Intelligent Systems Reference Library, 205-218. doi:10.1007/978-3-642-25755-1_11 | es_ES |