- -

A comprehensive probabilistic analysis of SIR-type epidemiological models based on full randomized Discrete-Time Markov Chain formulation with applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A comprehensive probabilistic analysis of SIR-type epidemiological models based on full randomized Discrete-Time Markov Chain formulation with applications

Mostrar el registro completo del ítem

Cortés, J.; El-Labany, S.; Navarro-Quiles, A.; Selim, MM.; Slama, H. (2020). A comprehensive probabilistic analysis of SIR-type epidemiological models based on full randomized Discrete-Time Markov Chain formulation with applications. Mathematical Methods in the Applied Sciences. 43(14):8204-8222. https://doi.org/10.1002/mma.6482

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162100

Ficheros en el ítem

Metadatos del ítem

Título: A comprehensive probabilistic analysis of SIR-type epidemiological models based on full randomized Discrete-Time Markov Chain formulation with applications
Autor: Cortés, J.-C. El-Labany, S.K. Navarro-Quiles, A. Selim, Mustafa M. Slama, H.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] This paper provides a comprehensive probabilistic analysis of a full randomization of approximate SIR-type epidemiological models based on discrete-time Markov chain formulation. The randomization is performed by ...[+]
Palabras clave: First probability density function , Random variable transformation technique , Randomized discrete-time Markov chains , Simulations , SIR epidemiological model
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematical Methods in the Applied Sciences. (issn: 0170-4214 )
DOI: 10.1002/mma.6482
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mma.6482
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F128/
Agradecimientos:
Spanish Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P; Generalitat Valenciana, Grant/Award Number: APOSTD/2019/128; Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P[+]
Tipo: Artículo

References

Hamra, G., MacLehose, R., & Richardson, D. (2013). Markov Chain Monte Carlo: an introduction for epidemiologists. International Journal of Epidemiology, 42(2), 627-634. doi:10.1093/ije/dyt043

Becker, N. (1981). A General Chain Binomial Model for Infectious Diseases. Biometrics, 37(2), 251. doi:10.2307/2530415

Allen, L. J. S. (2010). An Introduction to Stochastic Processes with Applications to Biology. doi:10.1201/b12537 [+]
Hamra, G., MacLehose, R., & Richardson, D. (2013). Markov Chain Monte Carlo: an introduction for epidemiologists. International Journal of Epidemiology, 42(2), 627-634. doi:10.1093/ije/dyt043

Becker, N. (1981). A General Chain Binomial Model for Infectious Diseases. Biometrics, 37(2), 251. doi:10.2307/2530415

Allen, L. J. S. (2010). An Introduction to Stochastic Processes with Applications to Biology. doi:10.1201/b12537

Hethcote, H. W. (2000). The Mathematics of Infectious Diseases. SIAM Review, 42(4), 599-653. doi:10.1137/s0036144500371907

Brauer, F., & Castillo-Chávez, C. (2001). Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics. doi:10.1007/978-1-4757-3516-1

Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2018). Some results about randomized binary Markov chains: theory, computing and applications. International Journal of Computer Mathematics, 97(1-2), 141-156. doi:10.1080/00207160.2018.1440290

Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Randomizing the parameters of a Markov chain to model the stroke disease: A technical generalization of established computational methodologies towards improving real applications. Journal of Computational and Applied Mathematics, 324, 225-240. doi:10.1016/j.cam.2017.04.040

Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 24(1-3), 86-97. doi:10.1016/j.cnsns.2014.12.016

Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199-210. doi:10.1016/j.cnsns.2015.08.009

Slama, H., Hussein, A., El-Bedwhey, N. A., & Selim, M. M. (2019). An approximate probabilistic solution of a random SIR-type epidemiological model using RVT technique. Applied Mathematics and Computation, 361, 144-156. doi:10.1016/j.amc.2019.05.019

Slama, H., El-Bedwhey, N. A., El-Depsy, A., & Selim, M. M. (2017). Solution of the finite Milne problem in stochastic media with RVT Technique. The European Physical Journal Plus, 132(12). doi:10.1140/epjp/i2017-11763-6

Kegan, B., & West, R. W. (2005). Modeling the simple epidemic with deterministic differential equations and random initial conditions. Mathematical Biosciences, 195(2), 179-193. doi:10.1016/j.mbs.2005.02.004

Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009

Van den Driessche, P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288-303. doi:10.1016/j.idm.2017.06.002

Heffernan, J. ., Smith, R. ., & Wahl, L. . (2005). Perspectives on the basic reproductive ratio. Journal of The Royal Society Interface, 2(4), 281-293. doi:10.1098/rsif.2005.0042

Khalil, K. M., Abdel-Aziz, M., Nazmy, T. T., & Salem, A.-B. M. (2012). An Agent-Based Modeling for Pandemic Influenza in Egypt. Intelligent Systems Reference Library, 205-218. doi:10.1007/978-3-642-25755-1_11

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem