- -

A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem

Mostrar el registro completo del ítem

García, J.; Yepes, V.; Martí Albiñana, JV. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics. 8(4):1-22. https://doi.org/10.3390/math8040555

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162101

Ficheros en el ítem

Metadatos del ítem

Título: A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem
Autor: García, José Yepes, V. Martí Albiñana, José Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] The counterfort retaining wall is one of the most frequent structures used in civil engineering. In this structure, optimization of cost and CO2 emissions are important. The first is relevant in the competitiveness ...[+]
Palabras clave: CO2 emission , Earth-retaining walls , Optimization , K-means , Cuckoo search
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8040555
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8040555
Código del Proyecto:
info:eu-repo/grantAgreement/FONDECYT//11180056/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
Agradecimientos:
The first author was supported by the Grant CONICYT/FONDECYT/INICIACION/11180056, the other two authors were supported by the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R).[+]
Tipo: Artículo

References

García, J., Altimiras, F., Peña, A., Astorga, G., & Peredo, O. (2018). A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems. Complexity, 2018, 1-15. doi:10.1155/2018/8395193

García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574

Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm for global optimization and discrete problems. International Journal of Machine Learning and Cybernetics, 10(12), 3445-3465. doi:10.1007/s13042-019-00931-8 [+]
García, J., Altimiras, F., Peña, A., Astorga, G., & Peredo, O. (2018). A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems. Complexity, 2018, 1-15. doi:10.1155/2018/8395193

García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574

Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm for global optimization and discrete problems. International Journal of Machine Learning and Cybernetics, 10(12), 3445-3465. doi:10.1007/s13042-019-00931-8

Kim, M., & Chae, J. (2019). Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path. Mathematics, 7(2), 154. doi:10.3390/math7020154

García, J., Crawford, B., Soto, R., & Astorga, G. (2019). A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm and Evolutionary Computation, 44, 646-664. doi:10.1016/j.swevo.2018.08.006

García, J., Lalla-Ruiz, E., Voß, S., & Droguett, E. L. (2020). Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. International Journal of Machine Learning and Cybernetics, 11(9), 1951-1970. doi:10.1007/s13042-020-01085-8

García, J., Moraga, P., Valenzuela, M., & Pinto, H. (2020). A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics, 8(4), 507. doi:10.3390/math8040507

Saeheaw, T., & Charoenchai, N. (2018). A comparative study among different parallel hybrid artificial intelligent approaches to solve the capacitated vehicle routing problem. International Journal of Bio-Inspired Computation, 11(3), 171. doi:10.1504/ijbic.2018.091704

Valdez, F., Castillo, O., Jain, A., & Jana, D. K. (2019). Nature-Inspired Optimization Algorithms for Neuro-Fuzzy Models in Real-World Control and Robotics Applications. Computational Intelligence and Neuroscience, 2019, 1-2. doi:10.1155/2019/9128451

Penadés-Plà, V., García-Segura, T., & Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics, 8(3), 398. doi:10.3390/math8030398

García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013

Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767

Marti-Vargas, J. R., Ferri, F. J., & Yepes, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2), 187-209. doi:10.12989/cac.2013.12.2.187

Fu, W., Tan, J., Zhang, X., Chen, T., & Wang, K. (2019). Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery. Complexity, 2019, 1-17. doi:10.1155/2019/3264969

Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140

Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., & Paredes, F. (2017). Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity, 2017, 1-19. doi:10.1155/2017/8404231

Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175-184. doi:10.1016/j.ins.2012.08.023

Pan, W.-T. (2012). A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74. doi:10.1016/j.knosys.2011.07.001

Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004

Calvet, L., Armas, J. de, Masip, D., & Juan, A. A. (2017). Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Mathematics, 15(1), 261-280. doi:10.1515/math-2017-0029

Talbi, E.-G. (2015). Combining metaheuristics with mathematical programming, constraint programming and machine learning. Annals of Operations Research, 240(1), 171-215. doi:10.1007/s10479-015-2034-y

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62-72. doi:10.1016/j.orp.2015.03.001

Chou, J.-S., & Nguyen, T.-K. (2018). Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning Regression. IEEE Transactions on Industrial Informatics, 14(7), 3132-3142. doi:10.1109/tii.2018.2794389

Sayed, G. I., Tharwat, A., & Hassanien, A. E. (2018). Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Applied Intelligence, 49(1), 188-205. doi:10.1007/s10489-018-1261-8

De León, A. D., Lalla-Ruiz, E., Melián-Batista, B., & Marcos Moreno-Vega, J. (2017). A Machine Learning-based system for berth scheduling at bulk terminals. Expert Systems with Applications, 87, 170-182. doi:10.1016/j.eswa.2017.06.010

García, J., Crawford, B., Soto, R., Castro, C., & Paredes, F. (2017). A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 48(2), 357-380. doi:10.1007/s10489-017-0972-6

Molina-Moreno, F., Martí, J. V., & Yepes, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: Implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884. doi:10.1016/j.jclepro.2017.06.246

Asta, S., Özcan, E., & Curtois, T. (2016). A tensor based hyper-heuristic for nurse rostering. Knowledge-Based Systems, 98, 185-199. doi:10.1016/j.knosys.2016.01.031

Martin, S., Ouelhadj, D., Beullens, P., Ozcan, E., Juan, A. A., & Burke, E. K. (2016). A multi-agent based cooperative approach to scheduling and routing. European Journal of Operational Research, 254(1), 169-178. doi:10.1016/j.ejor.2016.02.045

Ghazali, R., Deris, M. M., Nawi, N. M., & Abawajy, J. H. (Eds.). (2018). Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-319-72550-5

Veček, N., Mernik, M., Filipič, B., & Črepinšek, M. (2016). Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Information Sciences, 372, 446-469. doi:10.1016/j.ins.2016.08.066

Ries, J., & Beullens, P. (2015). A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction. Journal of the Operational Research Society, 66(5), 782-793. doi:10.1057/jors.2014.46

Yalcinoz, T., & Altun, H. (2001). Power economic dispatch using a hybrid genetic algorithm. IEEE Power Engineering Review, 21(3), 59-60. doi:10.1109/39.911360

Kaur, H., Virmani, J., Kriti, & Thakur, S. (2019). A genetic algorithm-based metaheuristic approach to customize a computer-aided classification system for enhanced screen film mammograms. U-Healthcare Monitoring Systems, 217-259. doi:10.1016/b978-0-12-815370-3.00010-4

Faris, H., Hassonah, M. A., Al-Zoubi, A. M., Mirjalili, S., & Aljarah, I. (2017). A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Computing and Applications, 30(8), 2355-2369. doi:10.1007/s00521-016-2818-2

Faris, H., Aljarah, I., & Mirjalili, S. (2017). Improved monarch butterfly optimization for unconstrained global search and neural network training. Applied Intelligence, 48(2), 445-464. doi:10.1007/s10489-017-0967-3

Chou, J.-S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80. doi:10.1016/j.autcon.2016.03.015

Pham, A.-D., Hoang, N.-D., & Nguyen, Q.-T. (2016). Predicting Compressive Strength of High-Performance Concrete Using Metaheuristic-Optimized Least Squares Support Vector Regression. Journal of Computing in Civil Engineering, 30(3), 06015002. doi:10.1061/(asce)cp.1943-5487.0000506

Göçken, M., Özçalıcı, M., Boru, A., & Dosdoğru, A. T. (2016). Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction. Expert Systems with Applications, 44, 320-331. doi:10.1016/j.eswa.2015.09.029

Chou, J.-S., & Pham, A.-D. (2017). Nature-inspired metaheuristic optimization in least squares support vector regression for obtaining bridge scour information. Information Sciences, 399, 64-80. doi:10.1016/j.ins.2017.02.051

Kuo, R. J., Lin, T. C., Zulvia, F. E., & Tsai, C. Y. (2018). A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis. Applied Soft Computing, 67, 299-308. doi:10.1016/j.asoc.2018.02.039

Singh Mann, P., & Singh, S. (2017). Energy efficient clustering protocol based on improved metaheuristic in wireless sensor networks. Journal of Network and Computer Applications, 83, 40-52. doi:10.1016/j.jnca.2017.01.031

Rosa, R. de A., Machado, A. M., Ribeiro, G. M., & Mauri, G. R. (2016). A mathematical model and a Clustering Search metaheuristic for planning the helicopter transportation of employees to the production platforms of oil and gas. Computers & Industrial Engineering, 101, 303-312. doi:10.1016/j.cie.2016.09.006

Faris, H., Mirjalili, S., & Aljarah, I. (2019). Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme. International Journal of Machine Learning and Cybernetics, 10(10), 2901-2920. doi:10.1007/s13042-018-00913-2

De Rosa, G. H., Papa, J. P., & Yang, X.-S. (2017). Handling dropout probability estimation in convolution neural networks using meta-heuristics. Soft Computing, 22(18), 6147-6156. doi:10.1007/s00500-017-2678-4

Rere, L. M. R., Fanany, M. I., & Arymurthy, A. M. (2016). Metaheuristic Algorithms for Convolution Neural Network. Computational Intelligence and Neuroscience, 2016, 1-13. doi:10.1155/2016/1537325

Jothi, R., Mohanty, S. K., & Ojha, A. (2017). DK-means: a deterministic K-means clustering algorithm for gene expression analysis. Pattern Analysis and Applications, 22(2), 649-667. doi:10.1007/s10044-017-0673-0

García, J., Pope, C., & Altimiras, F. (2017). A Distributed K-Means Segmentation Algorithm Applied to Lobesia botrana Recognition. Complexity, 2017, 1-14. doi:10.1155/2017/5137317

Arunkumar, N., Mohammed, M. A., Abd Ghani, M. K., Ibrahim, D. A., Abdulhay, E., Ramirez-Gonzalez, G., & de Albuquerque, V. H. C. (2018). K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor. Soft Computing, 23(19), 9083-9096. doi:10.1007/s00500-018-3618-7

Abdel-Basset, M., Wang, G.-G., Sangaiah, A. K., & Rushdy, E. (2017). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, 78(4), 3861-3884. doi:10.1007/s11042-017-4803-x

Chi, R., Su, Y., Zhang, D., Chi, X., & Zhang, H. (2017). A hybridization of cuckoo search and particle swarm optimization for solving optimization problems. Neural Computing and Applications, 31(S1), 653-670. doi:10.1007/s00521-017-3012-x

Li, J., Xiao, D., Lei, H., Zhang, T., & Tian, T. (2020). Using Cuckoo Search Algorithm with Q-Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location. Mathematics, 8(2), 149. doi:10.3390/math8020149

Pan, J.-S., Song, P.-C., Chu, S.-C., & Peng, Y.-J. (2020). Improved Compact Cuckoo Search Algorithm Applied to Location of Drone Logistics Hub. Mathematics, 8(3), 333. doi:10.3390/math8030333

Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023

Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134, 205-216. doi:10.1016/j.engstruct.2016.12.042

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem