Mostrar el registro sencillo del ítem
dc.contributor.author | García, José | es_ES |
dc.contributor.author | Yepes, V. | es_ES |
dc.contributor.author | Martí Albiñana, José Vicente | es_ES |
dc.date.accessioned | 2021-02-23T04:31:22Z | |
dc.date.available | 2021-02-23T04:31:22Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162101 | |
dc.description.abstract | [EN] The counterfort retaining wall is one of the most frequent structures used in civil engineering. In this structure, optimization of cost and CO2 emissions are important. The first is relevant in the competitiveness and efficiency of the company, the second in environmental impact. From the point of view of computational complexity, the problem is challenging due to the large number of possible combinations in the solution space. In this article, a k-means cuckoo search hybrid algorithm is proposed where the cuckoo search metaheuristic is used as an optimization mechanism in continuous spaces and the unsupervised k-means learning technique to discretize the solutions. A random operator is designed to determine the contribution of the k-means operator in the optimization process. The best values, the averages, and the interquartile ranges of the obtained distributions are compared. The hybrid algorithm was later compared to a version of harmony search that also solved the problem. The results show that the k-mean operator contributes significantly to the quality of the solutions and that our algorithm is highly competitive, surpassing the results obtained by harmony search. | es_ES |
dc.description.sponsorship | The first author was supported by the Grant CONICYT/FONDECYT/INICIACION/11180056, the other two authors were supported by the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | CO2 emission | es_ES |
dc.subject | Earth-retaining walls | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | K-means | es_ES |
dc.subject | Cuckoo search | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8040555 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDECYT//11180056/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | García, J.; Yepes, V.; Martí Albiñana, JV. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics. 8(4):1-22. https://doi.org/10.3390/math8040555 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8040555 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\407499 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Fondo Nacional de Desarrollo Científico y Tecnológico, Chile | es_ES |
dc.contributor.funder | Comisión Nacional de Investigación Científica y Tecnológica, Chile | es_ES |
dc.description.references | García, J., Altimiras, F., Peña, A., Astorga, G., & Peredo, O. (2018). A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems. Complexity, 2018, 1-15. doi:10.1155/2018/8395193 | es_ES |
dc.description.references | García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574 | es_ES |
dc.description.references | Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm for global optimization and discrete problems. International Journal of Machine Learning and Cybernetics, 10(12), 3445-3465. doi:10.1007/s13042-019-00931-8 | es_ES |
dc.description.references | Kim, M., & Chae, J. (2019). Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path. Mathematics, 7(2), 154. doi:10.3390/math7020154 | es_ES |
dc.description.references | García, J., Crawford, B., Soto, R., & Astorga, G. (2019). A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm and Evolutionary Computation, 44, 646-664. doi:10.1016/j.swevo.2018.08.006 | es_ES |
dc.description.references | García, J., Lalla-Ruiz, E., Voß, S., & Droguett, E. L. (2020). Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. International Journal of Machine Learning and Cybernetics, 11(9), 1951-1970. doi:10.1007/s13042-020-01085-8 | es_ES |
dc.description.references | García, J., Moraga, P., Valenzuela, M., & Pinto, H. (2020). A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics, 8(4), 507. doi:10.3390/math8040507 | es_ES |
dc.description.references | Saeheaw, T., & Charoenchai, N. (2018). A comparative study among different parallel hybrid artificial intelligent approaches to solve the capacitated vehicle routing problem. International Journal of Bio-Inspired Computation, 11(3), 171. doi:10.1504/ijbic.2018.091704 | es_ES |
dc.description.references | Valdez, F., Castillo, O., Jain, A., & Jana, D. K. (2019). Nature-Inspired Optimization Algorithms for Neuro-Fuzzy Models in Real-World Control and Robotics Applications. Computational Intelligence and Neuroscience, 2019, 1-2. doi:10.1155/2019/9128451 | es_ES |
dc.description.references | Penadés-Plà, V., García-Segura, T., & Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics, 8(3), 398. doi:10.3390/math8030398 | es_ES |
dc.description.references | García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013 | es_ES |
dc.description.references | Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767 | es_ES |
dc.description.references | Marti-Vargas, J. R., Ferri, F. J., & Yepes, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2), 187-209. doi:10.12989/cac.2013.12.2.187 | es_ES |
dc.description.references | Fu, W., Tan, J., Zhang, X., Chen, T., & Wang, K. (2019). Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery. Complexity, 2019, 1-17. doi:10.1155/2019/3264969 | es_ES |
dc.description.references | Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140 | es_ES |
dc.description.references | Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., & Paredes, F. (2017). Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity, 2017, 1-19. doi:10.1155/2017/8404231 | es_ES |
dc.description.references | Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175-184. doi:10.1016/j.ins.2012.08.023 | es_ES |
dc.description.references | Pan, W.-T. (2012). A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74. doi:10.1016/j.knosys.2011.07.001 | es_ES |
dc.description.references | Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004 | es_ES |
dc.description.references | Calvet, L., Armas, J. de, Masip, D., & Juan, A. A. (2017). Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Mathematics, 15(1), 261-280. doi:10.1515/math-2017-0029 | es_ES |
dc.description.references | Talbi, E.-G. (2015). Combining metaheuristics with mathematical programming, constraint programming and machine learning. Annals of Operations Research, 240(1), 171-215. doi:10.1007/s10479-015-2034-y | es_ES |
dc.description.references | Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62-72. doi:10.1016/j.orp.2015.03.001 | es_ES |
dc.description.references | Chou, J.-S., & Nguyen, T.-K. (2018). Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning Regression. IEEE Transactions on Industrial Informatics, 14(7), 3132-3142. doi:10.1109/tii.2018.2794389 | es_ES |
dc.description.references | Sayed, G. I., Tharwat, A., & Hassanien, A. E. (2018). Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Applied Intelligence, 49(1), 188-205. doi:10.1007/s10489-018-1261-8 | es_ES |
dc.description.references | De León, A. D., Lalla-Ruiz, E., Melián-Batista, B., & Marcos Moreno-Vega, J. (2017). A Machine Learning-based system for berth scheduling at bulk terminals. Expert Systems with Applications, 87, 170-182. doi:10.1016/j.eswa.2017.06.010 | es_ES |
dc.description.references | García, J., Crawford, B., Soto, R., Castro, C., & Paredes, F. (2017). A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 48(2), 357-380. doi:10.1007/s10489-017-0972-6 | es_ES |
dc.description.references | Molina-Moreno, F., Martí, J. V., & Yepes, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: Implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884. doi:10.1016/j.jclepro.2017.06.246 | es_ES |
dc.description.references | Asta, S., Özcan, E., & Curtois, T. (2016). A tensor based hyper-heuristic for nurse rostering. Knowledge-Based Systems, 98, 185-199. doi:10.1016/j.knosys.2016.01.031 | es_ES |
dc.description.references | Martin, S., Ouelhadj, D., Beullens, P., Ozcan, E., Juan, A. A., & Burke, E. K. (2016). A multi-agent based cooperative approach to scheduling and routing. European Journal of Operational Research, 254(1), 169-178. doi:10.1016/j.ejor.2016.02.045 | es_ES |
dc.description.references | Ghazali, R., Deris, M. M., Nawi, N. M., & Abawajy, J. H. (Eds.). (2018). Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-319-72550-5 | es_ES |
dc.description.references | Veček, N., Mernik, M., Filipič, B., & Črepinšek, M. (2016). Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Information Sciences, 372, 446-469. doi:10.1016/j.ins.2016.08.066 | es_ES |
dc.description.references | Ries, J., & Beullens, P. (2015). A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction. Journal of the Operational Research Society, 66(5), 782-793. doi:10.1057/jors.2014.46 | es_ES |
dc.description.references | Yalcinoz, T., & Altun, H. (2001). Power economic dispatch using a hybrid genetic algorithm. IEEE Power Engineering Review, 21(3), 59-60. doi:10.1109/39.911360 | es_ES |
dc.description.references | Kaur, H., Virmani, J., Kriti, & Thakur, S. (2019). A genetic algorithm-based metaheuristic approach to customize a computer-aided classification system for enhanced screen film mammograms. U-Healthcare Monitoring Systems, 217-259. doi:10.1016/b978-0-12-815370-3.00010-4 | es_ES |
dc.description.references | Faris, H., Hassonah, M. A., Al-Zoubi, A. M., Mirjalili, S., & Aljarah, I. (2017). A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Computing and Applications, 30(8), 2355-2369. doi:10.1007/s00521-016-2818-2 | es_ES |
dc.description.references | Faris, H., Aljarah, I., & Mirjalili, S. (2017). Improved monarch butterfly optimization for unconstrained global search and neural network training. Applied Intelligence, 48(2), 445-464. doi:10.1007/s10489-017-0967-3 | es_ES |
dc.description.references | Chou, J.-S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80. doi:10.1016/j.autcon.2016.03.015 | es_ES |
dc.description.references | Pham, A.-D., Hoang, N.-D., & Nguyen, Q.-T. (2016). Predicting Compressive Strength of High-Performance Concrete Using Metaheuristic-Optimized Least Squares Support Vector Regression. Journal of Computing in Civil Engineering, 30(3), 06015002. doi:10.1061/(asce)cp.1943-5487.0000506 | es_ES |
dc.description.references | Göçken, M., Özçalıcı, M., Boru, A., & Dosdoğru, A. T. (2016). Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction. Expert Systems with Applications, 44, 320-331. doi:10.1016/j.eswa.2015.09.029 | es_ES |
dc.description.references | Chou, J.-S., & Pham, A.-D. (2017). Nature-inspired metaheuristic optimization in least squares support vector regression for obtaining bridge scour information. Information Sciences, 399, 64-80. doi:10.1016/j.ins.2017.02.051 | es_ES |
dc.description.references | Kuo, R. J., Lin, T. C., Zulvia, F. E., & Tsai, C. Y. (2018). A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis. Applied Soft Computing, 67, 299-308. doi:10.1016/j.asoc.2018.02.039 | es_ES |
dc.description.references | Singh Mann, P., & Singh, S. (2017). Energy efficient clustering protocol based on improved metaheuristic in wireless sensor networks. Journal of Network and Computer Applications, 83, 40-52. doi:10.1016/j.jnca.2017.01.031 | es_ES |
dc.description.references | Rosa, R. de A., Machado, A. M., Ribeiro, G. M., & Mauri, G. R. (2016). A mathematical model and a Clustering Search metaheuristic for planning the helicopter transportation of employees to the production platforms of oil and gas. Computers & Industrial Engineering, 101, 303-312. doi:10.1016/j.cie.2016.09.006 | es_ES |
dc.description.references | Faris, H., Mirjalili, S., & Aljarah, I. (2019). Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme. International Journal of Machine Learning and Cybernetics, 10(10), 2901-2920. doi:10.1007/s13042-018-00913-2 | es_ES |
dc.description.references | De Rosa, G. H., Papa, J. P., & Yang, X.-S. (2017). Handling dropout probability estimation in convolution neural networks using meta-heuristics. Soft Computing, 22(18), 6147-6156. doi:10.1007/s00500-017-2678-4 | es_ES |
dc.description.references | Rere, L. M. R., Fanany, M. I., & Arymurthy, A. M. (2016). Metaheuristic Algorithms for Convolution Neural Network. Computational Intelligence and Neuroscience, 2016, 1-13. doi:10.1155/2016/1537325 | es_ES |
dc.description.references | Jothi, R., Mohanty, S. K., & Ojha, A. (2017). DK-means: a deterministic K-means clustering algorithm for gene expression analysis. Pattern Analysis and Applications, 22(2), 649-667. doi:10.1007/s10044-017-0673-0 | es_ES |
dc.description.references | García, J., Pope, C., & Altimiras, F. (2017). A Distributed K-Means Segmentation Algorithm Applied to Lobesia botrana Recognition. Complexity, 2017, 1-14. doi:10.1155/2017/5137317 | es_ES |
dc.description.references | Arunkumar, N., Mohammed, M. A., Abd Ghani, M. K., Ibrahim, D. A., Abdulhay, E., Ramirez-Gonzalez, G., & de Albuquerque, V. H. C. (2018). K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor. Soft Computing, 23(19), 9083-9096. doi:10.1007/s00500-018-3618-7 | es_ES |
dc.description.references | Abdel-Basset, M., Wang, G.-G., Sangaiah, A. K., & Rushdy, E. (2017). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, 78(4), 3861-3884. doi:10.1007/s11042-017-4803-x | es_ES |
dc.description.references | Chi, R., Su, Y., Zhang, D., Chi, X., & Zhang, H. (2017). A hybridization of cuckoo search and particle swarm optimization for solving optimization problems. Neural Computing and Applications, 31(S1), 653-670. doi:10.1007/s00521-017-3012-x | es_ES |
dc.description.references | Li, J., Xiao, D., Lei, H., Zhang, T., & Tian, T. (2020). Using Cuckoo Search Algorithm with Q-Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location. Mathematics, 8(2), 149. doi:10.3390/math8020149 | es_ES |
dc.description.references | Pan, J.-S., Song, P.-C., Chu, S.-C., & Peng, Y.-J. (2020). Improved Compact Cuckoo Search Algorithm Applied to Location of Drone Logistics Hub. Mathematics, 8(3), 333. doi:10.3390/math8030333 | es_ES |
dc.description.references | Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023 | es_ES |
dc.description.references | Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134, 205-216. doi:10.1016/j.engstruct.2016.12.042 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |