- -

A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García, José es_ES
dc.contributor.author Yepes, V. es_ES
dc.contributor.author Martí Albiñana, José Vicente es_ES
dc.date.accessioned 2021-02-23T04:31:22Z
dc.date.available 2021-02-23T04:31:22Z
dc.date.issued 2020-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162101
dc.description.abstract [EN] The counterfort retaining wall is one of the most frequent structures used in civil engineering. In this structure, optimization of cost and CO2 emissions are important. The first is relevant in the competitiveness and efficiency of the company, the second in environmental impact. From the point of view of computational complexity, the problem is challenging due to the large number of possible combinations in the solution space. In this article, a k-means cuckoo search hybrid algorithm is proposed where the cuckoo search metaheuristic is used as an optimization mechanism in continuous spaces and the unsupervised k-means learning technique to discretize the solutions. A random operator is designed to determine the contribution of the k-means operator in the optimization process. The best values, the averages, and the interquartile ranges of the obtained distributions are compared. The hybrid algorithm was later compared to a version of harmony search that also solved the problem. The results show that the k-mean operator contributes significantly to the quality of the solutions and that our algorithm is highly competitive, surpassing the results obtained by harmony search. es_ES
dc.description.sponsorship The first author was supported by the Grant CONICYT/FONDECYT/INICIACION/11180056, the other two authors were supported by the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CO2 emission es_ES
dc.subject Earth-retaining walls es_ES
dc.subject Optimization es_ES
dc.subject K-means es_ES
dc.subject Cuckoo search es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8040555 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDECYT//11180056/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation García, J.; Yepes, V.; Martí Albiñana, JV. (2020). A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics. 8(4):1-22. https://doi.org/10.3390/math8040555 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8040555 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\407499 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fondo Nacional de Desarrollo Científico y Tecnológico, Chile es_ES
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.description.references García, J., Altimiras, F., Peña, A., Astorga, G., & Peredo, O. (2018). A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems. Complexity, 2018, 1-15. doi:10.1155/2018/8395193 es_ES
dc.description.references García, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., … Astorga, G. (2019). A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 1-16. doi:10.1155/2019/3238574 es_ES
dc.description.references Al-Madi, N., Faris, H., & Mirjalili, S. (2019). Binary multi-verse optimization algorithm for global optimization and discrete problems. International Journal of Machine Learning and Cybernetics, 10(12), 3445-3465. doi:10.1007/s13042-019-00931-8 es_ES
dc.description.references Kim, M., & Chae, J. (2019). Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path. Mathematics, 7(2), 154. doi:10.3390/math7020154 es_ES
dc.description.references García, J., Crawford, B., Soto, R., & Astorga, G. (2019). A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm and Evolutionary Computation, 44, 646-664. doi:10.1016/j.swevo.2018.08.006 es_ES
dc.description.references García, J., Lalla-Ruiz, E., Voß, S., & Droguett, E. L. (2020). Enhancing a machine learning binarization framework by perturbation operators: analysis on the multidimensional knapsack problem. International Journal of Machine Learning and Cybernetics, 11(9), 1951-1970. doi:10.1007/s13042-020-01085-8 es_ES
dc.description.references García, J., Moraga, P., Valenzuela, M., & Pinto, H. (2020). A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem. Mathematics, 8(4), 507. doi:10.3390/math8040507 es_ES
dc.description.references Saeheaw, T., & Charoenchai, N. (2018). A comparative study among different parallel hybrid artificial intelligent approaches to solve the capacitated vehicle routing problem. International Journal of Bio-Inspired Computation, 11(3), 171. doi:10.1504/ijbic.2018.091704 es_ES
dc.description.references Valdez, F., Castillo, O., Jain, A., & Jana, D. K. (2019). Nature-Inspired Optimization Algorithms for Neuro-Fuzzy Models in Real-World Control and Robotics Applications. Computational Intelligence and Neuroscience, 2019, 1-2. doi:10.1155/2019/9128451 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., & Yepes, V. (2020). Robust Design Optimization for Low-Cost Concrete Box-Girder Bridge. Mathematics, 8(3), 398. doi:10.3390/math8030398 es_ES
dc.description.references García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013 es_ES
dc.description.references Yepes, V., Martí, J. V., & García, J. (2020). Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls. Sustainability, 12(7), 2767. doi:10.3390/su12072767 es_ES
dc.description.references Marti-Vargas, J. R., Ferri, F. J., & Yepes, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2), 187-209. doi:10.12989/cac.2013.12.2.187 es_ES
dc.description.references Fu, W., Tan, J., Zhang, X., Chen, T., & Wang, K. (2019). Blind Parameter Identification of MAR Model and Mutation Hybrid GWO-SCA Optimized SVM for Fault Diagnosis of Rotating Machinery. Complexity, 2019, 1-17. doi:10.1155/2019/3264969 es_ES
dc.description.references Sierra, L. A., Yepes, V., García-Segura, T., & Pellicer, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176, 521-534. doi:10.1016/j.jclepro.2017.12.140 es_ES
dc.description.references Crawford, B., Soto, R., Astorga, G., García, J., Castro, C., & Paredes, F. (2017). Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity, 2017, 1-19. doi:10.1155/2017/8404231 es_ES
dc.description.references Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175-184. doi:10.1016/j.ins.2012.08.023 es_ES
dc.description.references Pan, W.-T. (2012). A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74. doi:10.1016/j.knosys.2011.07.001 es_ES
dc.description.references Rashedi, E., Nezamabadi-pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Information Sciences, 179(13), 2232-2248. doi:10.1016/j.ins.2009.03.004 es_ES
dc.description.references Calvet, L., Armas, J. de, Masip, D., & Juan, A. A. (2017). Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs. Open Mathematics, 15(1), 261-280. doi:10.1515/math-2017-0029 es_ES
dc.description.references Talbi, E.-G. (2015). Combining metaheuristics with mathematical programming, constraint programming and machine learning. Annals of Operations Research, 240(1), 171-215. doi:10.1007/s10479-015-2034-y es_ES
dc.description.references Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., & Figueira, G. (2015). A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, 2, 62-72. doi:10.1016/j.orp.2015.03.001 es_ES
dc.description.references Chou, J.-S., & Nguyen, T.-K. (2018). Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning Regression. IEEE Transactions on Industrial Informatics, 14(7), 3132-3142. doi:10.1109/tii.2018.2794389 es_ES
dc.description.references Sayed, G. I., Tharwat, A., & Hassanien, A. E. (2018). Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Applied Intelligence, 49(1), 188-205. doi:10.1007/s10489-018-1261-8 es_ES
dc.description.references De León, A. D., Lalla-Ruiz, E., Melián-Batista, B., & Marcos Moreno-Vega, J. (2017). A Machine Learning-based system for berth scheduling at bulk terminals. Expert Systems with Applications, 87, 170-182. doi:10.1016/j.eswa.2017.06.010 es_ES
dc.description.references García, J., Crawford, B., Soto, R., Castro, C., & Paredes, F. (2017). A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 48(2), 357-380. doi:10.1007/s10489-017-0972-6 es_ES
dc.description.references Molina-Moreno, F., Martí, J. V., & Yepes, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: Implications for low-carbon conceptual designs. Journal of Cleaner Production, 164, 872-884. doi:10.1016/j.jclepro.2017.06.246 es_ES
dc.description.references Asta, S., Özcan, E., & Curtois, T. (2016). A tensor based hyper-heuristic for nurse rostering. Knowledge-Based Systems, 98, 185-199. doi:10.1016/j.knosys.2016.01.031 es_ES
dc.description.references Martin, S., Ouelhadj, D., Beullens, P., Ozcan, E., Juan, A. A., & Burke, E. K. (2016). A multi-agent based cooperative approach to scheduling and routing. European Journal of Operational Research, 254(1), 169-178. doi:10.1016/j.ejor.2016.02.045 es_ES
dc.description.references Ghazali, R., Deris, M. M., Nawi, N. M., & Abawajy, J. H. (Eds.). (2018). Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-319-72550-5 es_ES
dc.description.references Veček, N., Mernik, M., Filipič, B., & Črepinšek, M. (2016). Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Information Sciences, 372, 446-469. doi:10.1016/j.ins.2016.08.066 es_ES
dc.description.references Ries, J., & Beullens, P. (2015). A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction. Journal of the Operational Research Society, 66(5), 782-793. doi:10.1057/jors.2014.46 es_ES
dc.description.references Yalcinoz, T., & Altun, H. (2001). Power economic dispatch using a hybrid genetic algorithm. IEEE Power Engineering Review, 21(3), 59-60. doi:10.1109/39.911360 es_ES
dc.description.references Kaur, H., Virmani, J., Kriti, & Thakur, S. (2019). A genetic algorithm-based metaheuristic approach to customize a computer-aided classification system for enhanced screen film mammograms. U-Healthcare Monitoring Systems, 217-259. doi:10.1016/b978-0-12-815370-3.00010-4 es_ES
dc.description.references Faris, H., Hassonah, M. A., Al-Zoubi, A. M., Mirjalili, S., & Aljarah, I. (2017). A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture. Neural Computing and Applications, 30(8), 2355-2369. doi:10.1007/s00521-016-2818-2 es_ES
dc.description.references Faris, H., Aljarah, I., & Mirjalili, S. (2017). Improved monarch butterfly optimization for unconstrained global search and neural network training. Applied Intelligence, 48(2), 445-464. doi:10.1007/s10489-017-0967-3 es_ES
dc.description.references Chou, J.-S., & Thedja, J. P. P. (2016). Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems. Automation in Construction, 68, 65-80. doi:10.1016/j.autcon.2016.03.015 es_ES
dc.description.references Pham, A.-D., Hoang, N.-D., & Nguyen, Q.-T. (2016). Predicting Compressive Strength of High-Performance Concrete Using Metaheuristic-Optimized Least Squares Support Vector Regression. Journal of Computing in Civil Engineering, 30(3), 06015002. doi:10.1061/(asce)cp.1943-5487.0000506 es_ES
dc.description.references Göçken, M., Özçalıcı, M., Boru, A., & Dosdoğru, A. T. (2016). Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction. Expert Systems with Applications, 44, 320-331. doi:10.1016/j.eswa.2015.09.029 es_ES
dc.description.references Chou, J.-S., & Pham, A.-D. (2017). Nature-inspired metaheuristic optimization in least squares support vector regression for obtaining bridge scour information. Information Sciences, 399, 64-80. doi:10.1016/j.ins.2017.02.051 es_ES
dc.description.references Kuo, R. J., Lin, T. C., Zulvia, F. E., & Tsai, C. Y. (2018). A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis. Applied Soft Computing, 67, 299-308. doi:10.1016/j.asoc.2018.02.039 es_ES
dc.description.references Singh Mann, P., & Singh, S. (2017). Energy efficient clustering protocol based on improved metaheuristic in wireless sensor networks. Journal of Network and Computer Applications, 83, 40-52. doi:10.1016/j.jnca.2017.01.031 es_ES
dc.description.references Rosa, R. de A., Machado, A. M., Ribeiro, G. M., & Mauri, G. R. (2016). A mathematical model and a Clustering Search metaheuristic for planning the helicopter transportation of employees to the production platforms of oil and gas. Computers & Industrial Engineering, 101, 303-312. doi:10.1016/j.cie.2016.09.006 es_ES
dc.description.references Faris, H., Mirjalili, S., & Aljarah, I. (2019). Automatic selection of hidden neurons and weights in neural networks using grey wolf optimizer based on a hybrid encoding scheme. International Journal of Machine Learning and Cybernetics, 10(10), 2901-2920. doi:10.1007/s13042-018-00913-2 es_ES
dc.description.references De Rosa, G. H., Papa, J. P., & Yang, X.-S. (2017). Handling dropout probability estimation in convolution neural networks using meta-heuristics. Soft Computing, 22(18), 6147-6156. doi:10.1007/s00500-017-2678-4 es_ES
dc.description.references Rere, L. M. R., Fanany, M. I., & Arymurthy, A. M. (2016). Metaheuristic Algorithms for Convolution Neural Network. Computational Intelligence and Neuroscience, 2016, 1-13. doi:10.1155/2016/1537325 es_ES
dc.description.references Jothi, R., Mohanty, S. K., & Ojha, A. (2017). DK-means: a deterministic K-means clustering algorithm for gene expression analysis. Pattern Analysis and Applications, 22(2), 649-667. doi:10.1007/s10044-017-0673-0 es_ES
dc.description.references García, J., Pope, C., & Altimiras, F. (2017). A Distributed K-Means Segmentation Algorithm Applied to Lobesia botrana Recognition. Complexity, 2017, 1-14. doi:10.1155/2017/5137317 es_ES
dc.description.references Arunkumar, N., Mohammed, M. A., Abd Ghani, M. K., Ibrahim, D. A., Abdulhay, E., Ramirez-Gonzalez, G., & de Albuquerque, V. H. C. (2018). K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor. Soft Computing, 23(19), 9083-9096. doi:10.1007/s00500-018-3618-7 es_ES
dc.description.references Abdel-Basset, M., Wang, G.-G., Sangaiah, A. K., & Rushdy, E. (2017). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, 78(4), 3861-3884. doi:10.1007/s11042-017-4803-x es_ES
dc.description.references Chi, R., Su, Y., Zhang, D., Chi, X., & Zhang, H. (2017). A hybridization of cuckoo search and particle swarm optimization for solving optimization problems. Neural Computing and Applications, 31(S1), 653-670. doi:10.1007/s00521-017-3012-x es_ES
dc.description.references Li, J., Xiao, D., Lei, H., Zhang, T., & Tian, T. (2020). Using Cuckoo Search Algorithm with Q-Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location. Mathematics, 8(2), 149. doi:10.3390/math8020149 es_ES
dc.description.references Pan, J.-S., Song, P.-C., Chu, S.-C., & Peng, Y.-J. (2020). Improved Compact Cuckoo Search Algorithm Applied to Location of Drone Logistics Hub. Mathematics, 8(3), 333. doi:10.3390/math8030333 es_ES
dc.description.references Yepes, V., Alcala, J., Perea, C., & González-Vidosa, F. (2008). A parametric study of optimum earth-retaining walls by simulated annealing. Engineering Structures, 30(3), 821-830. doi:10.1016/j.engstruct.2007.05.023 es_ES
dc.description.references Molina-Moreno, F., García-Segura, T., Martí, J. V., & Yepes, V. (2017). Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms. Engineering Structures, 134, 205-216. doi:10.1016/j.engstruct.2016.12.042 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem