- -

Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models

Mostrar el registro completo del ítem

Trull, O.; García-Díaz, JC.; Troncoso, A. (2020). Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models. Mathematics. 8(2):1-17. https://doi.org/10.3390/math8020268

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162104

Ficheros en el ítem

Metadatos del ítem

Título: Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models
Autor: Trull, Oscar García-Díaz, J. Carlos Troncoso, Alicia
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
[EN] The Holt-Winters models are one of the most popular forecasting algorithms. As well-known, these models are recursive and thus, an initialization value is needed to feed the model, being that a proper initialization ...[+]
Palabras clave: Forecasting , Multiple seasonal periods , Holt-Winters , Initialization
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8020268
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8020268
Tipo: Artículo

References

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008

Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799-805. doi:10.1057/palgrave.jors.2601589

Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139-152. doi:10.1016/j.ejor.2009.10.003 [+]
Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008

Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799-805. doi:10.1057/palgrave.jors.2601589

Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139-152. doi:10.1016/j.ejor.2009.10.003

Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5-10. doi:10.1016/j.ijforecast.2003.09.015

Bowerman, B. L., Koehler, A., & Pack, D. J. (1990). Forecasting time series with increasing seasonal variation. Journal of Forecasting, 9(5), 419-436. doi:10.1002/for.3980090502

Initializing the Holt–Winters Methodhttps://robjhyndman.com/hyndsight/hw-initialization/

Rasmussen, R. (2004). On time series data and optimal parameters. Omega, 32(2), 111-120. doi:10.1016/j.omega.2003.09.013

Trull, Ó., García-Díaz, J., & Troncoso, A. (2019). Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter. Energies, 12(6), 1083. doi:10.3390/en12061083

Segura, J. V., & Vercher, E. (2001). A spreadsheet modeling approach to the Holt–Winters optimal forecasting. European Journal of Operational Research, 131(2), 375-388. doi:10.1016/s0377-2217(00)00062-x

Makridakis, S., & Hibon, M. (1991). Exponential smoothing: The effect of initial values and loss functions on post-sample forecasting accuracy. International Journal of Forecasting, 7(3), 317-330. doi:10.1016/0169-2070(91)90005-g

Williams, D. W., & Miller, D. (1999). Level-adjusted exponential smoothing for modeling planned discontinuities. International Journal of Forecasting, 15(3), 273-289. doi:10.1016/s0169-2070(98)00083-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem