Mostrar el registro sencillo del ítem
dc.contributor.author | Trull, Oscar | es_ES |
dc.contributor.author | García-Díaz, J. Carlos | es_ES |
dc.contributor.author | Troncoso, Alicia | es_ES |
dc.date.accessioned | 2021-02-23T04:31:29Z | |
dc.date.available | 2021-02-23T04:31:29Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162104 | |
dc.description.abstract | [EN] The Holt-Winters models are one of the most popular forecasting algorithms. As well-known, these models are recursive and thus, an initialization value is needed to feed the model, being that a proper initialization of the Holt-Winters models is crucial for obtaining a good accuracy of the predictions. Moreover, the introduction of multiple seasonal Holt-Winters models requires a new development of methods for seed initialization and obtaining initial values. This work proposes new initialization methods based on the adaptation of the traditional methods developed for a single seasonality in order to include multiple seasonalities. Thus, new methods to initialize the level, trend, and seasonality in multiple seasonal Holt-Winters models are presented. These new methods are tested with an application for electricity demand in Spain and analyzed for their impact on the accuracy of forecasts. As a consequence of the analysis carried out, which initialization method to use for the level, trend, and seasonality in multiple seasonal Holt-Winters models with an additive and multiplicative trend is provided. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Forecasting | es_ES |
dc.subject | Multiple seasonal periods | es_ES |
dc.subject | Holt-Winters | es_ES |
dc.subject | Initialization | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/math8020268 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Trull, O.; García-Díaz, JC.; Troncoso, A. (2020). Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models. Mathematics. 8(2):1-17. https://doi.org/10.3390/math8020268 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/math8020268 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2227-7390 | es_ES |
dc.relation.pasarela | S\404921 | es_ES |
dc.description.references | Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008 | es_ES |
dc.description.references | Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799-805. doi:10.1057/palgrave.jors.2601589 | es_ES |
dc.description.references | Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139-152. doi:10.1016/j.ejor.2009.10.003 | es_ES |
dc.description.references | Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5-10. doi:10.1016/j.ijforecast.2003.09.015 | es_ES |
dc.description.references | Bowerman, B. L., Koehler, A., & Pack, D. J. (1990). Forecasting time series with increasing seasonal variation. Journal of Forecasting, 9(5), 419-436. doi:10.1002/for.3980090502 | es_ES |
dc.description.references | Initializing the Holt–Winters Methodhttps://robjhyndman.com/hyndsight/hw-initialization/ | es_ES |
dc.description.references | Rasmussen, R. (2004). On time series data and optimal parameters. Omega, 32(2), 111-120. doi:10.1016/j.omega.2003.09.013 | es_ES |
dc.description.references | Trull, Ó., García-Díaz, J., & Troncoso, A. (2019). Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter. Energies, 12(6), 1083. doi:10.3390/en12061083 | es_ES |
dc.description.references | Segura, J. V., & Vercher, E. (2001). A spreadsheet modeling approach to the Holt–Winters optimal forecasting. European Journal of Operational Research, 131(2), 375-388. doi:10.1016/s0377-2217(00)00062-x | es_ES |
dc.description.references | Makridakis, S., & Hibon, M. (1991). Exponential smoothing: The effect of initial values and loss functions on post-sample forecasting accuracy. International Journal of Forecasting, 7(3), 317-330. doi:10.1016/0169-2070(91)90005-g | es_ES |
dc.description.references | Williams, D. W., & Miller, D. (1999). Level-adjusted exponential smoothing for modeling planned discontinuities. International Journal of Forecasting, 15(3), 273-289. doi:10.1016/s0169-2070(98)00083-1 | es_ES |