- -

Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics

Mostrar el registro completo del ítem

Andrade, J.; González Martínez, MC.; Chiralt Boix, MA. (2020). Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics. Polymer Degradation and Stability. 179:1-11. https://doi.org/10.1016/j.polymdegradstab.2020.109282

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162235

Ficheros en el ítem

Metadatos del ítem

Título: Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics
Autor: Andrade, J. González Martínez, María Consuelo Chiralt Boix, Mª Amparo
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Poly (vinyl alcohol) (PVA) is a hydrophilic linear polymer obtained from the controlled hydrolysis of poly (vinyl acetate) (PVAc). The molecular weight (Mw) and degree of hydrolysis (DH) of PVA are considered relevant ...[+]
Palabras clave: Molecular weight , Degree of hydrolysis , Thermal behaviour , Cross-linking , Food packaging
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Polymer Degradation and Stability. (issn: 0141-3910 )
DOI: 10.1016/j.polymdegradstab.2020.109282
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.polymdegradstab.2020.109282
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/
Agradecimientos:
The authors would like to thank the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Author Johana Andrade thanks the Departamento de Narino-Colombia ...[+]
Tipo: Artículo

References

Bhagabati, P., Hazarika, D., & Katiyar, V. (2019). Tailor-made ultra-crystalline, high molecular weight poly(ε-caprolactone) films with improved oxygen gas barrier and optical properties: a facile and scalable approach. International Journal of Biological Macromolecules, 124, 1040-1052. doi:10.1016/j.ijbiomac.2018.11.199

Bai, Z., Shi, K., Su, T., & Wang, Z. (2018). Correlation between the chemical structure and enzymatic hydrolysis of Poly(butylene succinate), Poly(butylene adipate), and Poly(butylene suberate). Polymer Degradation and Stability, 158, 111-118. doi:10.1016/j.polymdegradstab.2018.10.024

Cano, A., Fortunati, E., Cháfer, M., Kenny, J. M., Chiralt, A., & González-Martínez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84-93. doi:10.1016/j.foodhyd.2015.01.008 [+]
Bhagabati, P., Hazarika, D., & Katiyar, V. (2019). Tailor-made ultra-crystalline, high molecular weight poly(ε-caprolactone) films with improved oxygen gas barrier and optical properties: a facile and scalable approach. International Journal of Biological Macromolecules, 124, 1040-1052. doi:10.1016/j.ijbiomac.2018.11.199

Bai, Z., Shi, K., Su, T., & Wang, Z. (2018). Correlation between the chemical structure and enzymatic hydrolysis of Poly(butylene succinate), Poly(butylene adipate), and Poly(butylene suberate). Polymer Degradation and Stability, 158, 111-118. doi:10.1016/j.polymdegradstab.2018.10.024

Cano, A., Fortunati, E., Cháfer, M., Kenny, J. M., Chiralt, A., & González-Martínez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84-93. doi:10.1016/j.foodhyd.2015.01.008

Kahvand, F., & Fasihi, M. (2019). Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, 140, 775-781. doi:10.1016/j.ijbiomac.2019.08.185

Aydın, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends. Carbohydrate Polymers, 136, 441-448. doi:10.1016/j.carbpol.2015.08.093

Domene-López, D., Guillén, M. M., Martin-Gullon, I., García-Quesada, J. C., & Montalbán, M. G. (2018). Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydrate Polymers, 202, 299-305. doi:10.1016/j.carbpol.2018.08.137

Hilmi, F. F., Wahit, M. ., Shukri, N. ., Ghazali, Z., & Zanuri, A. Z. (2019). Physico-chemical properties of biodegradable films of polyvinyl alcohol/sago starch for food packaging. Materials Today: Proceedings, 16, 1819-1824. doi:10.1016/j.matpr.2019.06.056

Tian, H., Yan, J., Rajulu, A. V., Xiang, A., & Luo, X. (2017). Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. International Journal of Biological Macromolecules, 96, 518-523. doi:10.1016/j.ijbiomac.2016.12.067

Lara, B. R. B., Araújo, A. C. M. A., Dias, M. V., Guimarães, M., Santos, T. A., Ferreira, L. F., & Borges, S. V. (2019). Morphological, mechanical and physical properties of new whey protein isolate/ polyvinyl alcohol blends for food flexible packaging. Food Packaging and Shelf Life, 19, 16-23. doi:10.1016/j.fpsl.2018.11.010

Ghaderi, J., Hosseini, S. F., Keyvani, N., & Gómez-Guillén, M. C. (2019). Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocolloids, 95, 122-132. doi:10.1016/j.foodhyd.2019.04.021

Tang, Y.-F., Du, Y.-M., Hu, X.-W., Shi, X.-W., & Kennedy, J. F. (2007). Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydrate Polymers, 67(4), 491-499. doi:10.1016/j.carbpol.2006.06.015

Thanyacharoen, T., Chuysinuan, P., Techasakul, S., Nooeaid, P., & Ummartyotin, S. (2018). Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity. International Journal of Biological Macromolecules, 107, 363-370. doi:10.1016/j.ijbiomac.2017.09.002

Ghorpade, V. S., Dias, R. J., Mali, K. K., & Mulla, S. I. (2019). Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs. Journal of Drug Delivery Science and Technology, 52, 421-430. doi:10.1016/j.jddst.2019.05.013

Cazón, P., Velázquez, G., & Vázquez, M. (2019). Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydrate Polymers, 216, 72-85. doi:10.1016/j.carbpol.2019.03.093

Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001

Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. doi:10.1016/j.tifs.2013.10.008

Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19. doi:10.1016/j.fbp.2018.05.001

Kavoosi, G., Nateghpoor, B., Dadfar, S. M. M., & Dadfar, S. M. A. (2014). Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material. Journal of Applied Polymer Science, 131(20), n/a-n/a. doi:10.1002/app.40937

Chen, C., Xu, Z., Ma, Y., Liu, J., Zhang, Q., Tang, Z., … Xie, J. (2018). Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control, 88, 105-112. doi:10.1016/j.foodcont.2017.12.039

Chenwei, C., Zhipeng, T., Yarui, M., Weiqiang, Q., Fuxin, Y., Jun, M., & Jing, X. (2018). Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly(vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Progress in Organic Coatings, 123, 176-184. doi:10.1016/j.porgcoat.2018.07.001

Ma, Q., Ren, Y., & Wang, L. (2017). Investigation of antioxidant activity and release kinetics of curcumin from tara gum/ polyvinyl alcohol active film. Food Hydrocolloids, 70, 286-292. doi:10.1016/j.foodhyd.2017.04.018

Yoon, S.-D., Kim, Y.-M., Kim, B. I., & Je, J.-Y. (2017). Preparation and antibacterial activities of chitosan-gallic acid/polyvinyl alcohol blend film by LED-UV irradiation. Journal of Photochemistry and Photobiology B: Biology, 176, 145-149. doi:10.1016/j.jphotobiol.2017.09.024

Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290-297. doi:10.1016/j.foodhyd.2012.03.005

Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075

Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006

Song, X., Zuo, G., & Chen, F. (2018). Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International Journal of Biological Macromolecules, 107, 1302-1309. doi:10.1016/j.ijbiomac.2017.09.114

Wiśniewska, M., Bogatyrov, V., Ostolska, I., Szewczuk-Karpisz, K., Terpiłowski, K., & Nosal-Wiercińska, A. (2015). Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide Mn x O y –SiO2. Adsorption, 22(4-6), 417-423. doi:10.1007/s10450-015-9696-2

Tampau, A., González-Martínez, C., & Chiralt, A. (2020). Polyvinyl alcohol-based materials encapsulating carvacrol obtained by solvent casting and electrospinning. Reactive and Functional Polymers, 153, 104603. doi:10.1016/j.reactfunctpolym.2020.104603

Abral, H., Hartono, A., Hafizulhaq, F., Handayani, D., Sugiarti, E., & Pradipta, O. (2019). Characterization of PVA/cassava starch biocomposites fabricated with and without sonication using bacterial cellulose fiber loadings. Carbohydrate Polymers, 206, 593-601. doi:10.1016/j.carbpol.2018.11.054

Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. doi:10.1016/j.foodhyd.2018.02.028

Buendía−Moreno, L., Sánchez−Martínez, M. J., Antolinos, V., Ros−Chumillas, M., Navarro−Segura, L., Soto−Jover, S., … López−Gómez, A. (2020). Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or halloysite nanotubes. A case study for fresh tomato storage. Food Control, 107, 106763. doi:10.1016/j.foodcont.2019.106763

Neira, L. M., Martucci, J. F., Stejskal, N., & Ruseckaite, R. A. (2019). Time-dependent evolution of properties of fish gelatin edible films enriched with carvacrol during storage. Food Hydrocolloids, 94, 304-310. doi:10.1016/j.foodhyd.2019.03.020

Trindade, G. G. G., Thrivikraman, G., Menezes, P. P., França, C. M., Lima, B. S., Carvalho, Y. M. B. G., … Araújo, A. A. S. (2019). Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food and Chemical Toxicology, 125, 198-209. doi:10.1016/j.fct.2019.01.003

Wang, H.-Y., Lu, S.-S., & Lun, Z.-R. (2009). Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol. Cryobiology, 58(1), 115-117. doi:10.1016/j.cryobiol.2008.10.131

Rimez, B., Rahier, H., Van Assche, G., Artoos, T., Biesemans, M., & Van Mele, B. (2008). The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: Experimental study of the degradation mechanism. Polymer Degradation and Stability, 93(4), 800-810. doi:10.1016/j.polymdegradstab.2008.01.010

Rimez, B., Rahier, H., Van Assche, G., Artoos, T., & Van Mele, B. (2008). The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part II: Modelling the degradation kinetics. Polymer Degradation and Stability, 93(6), 1222-1230. doi:10.1016/j.polymdegradstab.2008.01.021

Cristancho, D., Zhou, Y., Cooper, R., Huitink, D., Aksoy, F., Liu, Z., … Seminario, J. M. (2013). Degradation of polyvinyl alcohol under mechanothermal stretching. Journal of Molecular Modeling, 19(8), 3245-3253. doi:10.1007/s00894-013-1828-6

Safna Hussan, K. P., Thayyil, M. S., Jinitha, T. V., & Kolte, J. (2019). Development of an ionogel membrane PVA/[EMIM] [SCN] with enhanced thermal stability and ionic conductivity for electrochemical application. Journal of Molecular Liquids, 274, 402-413. doi:10.1016/j.molliq.2018.10.128

Restrepo, I., Medina, C., Meruane, V., Akbari-Fakhrabadi, A., Flores, P., & Rodríguez-Llamazares, S. (2018). The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends. Polímeros, 28(2), 169-177. doi:10.1590/0104-1428.03117

Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094

Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384-391. doi:10.1016/j.jfoodeng.2010.03.004

Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193-198. doi:10.1016/j.foodchem.2009.10.006

Valencia-Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979-987. doi:10.1002/pi.5143

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem