- -

Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Andrade, J. es_ES
dc.contributor.author González Martínez, María Consuelo es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.date.accessioned 2021-02-24T04:31:29Z
dc.date.available 2021-02-24T04:31:29Z
dc.date.issued 2020-09 es_ES
dc.identifier.issn 0141-3910 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162235
dc.description.abstract [EN] Poly (vinyl alcohol) (PVA) is a hydrophilic linear polymer obtained from the controlled hydrolysis of poly (vinyl acetate) (PVAc). The molecular weight (Mw) and degree of hydrolysis (DH) of PVA are considered relevant in both the functionality of the polymer and its capacity for film formation. This study analysed the influence of the Mw and DH of PVA on both the film's ability to incorporate carvacrol (CA), for the purposes of obtaining active films for food packaging application, as well as on the film microstructure, thermal behaviour and its functional properties as packaging material. CA was incorporated at 5 and 10 g/100 g polymer by emulsification in the polymer-water solutions, while the films were obtained by casting. The higher Mw polymer provided films with a better mechanical performance but less CA retention and a more heterogeneous structure. In contrast, low Mw, partially acetylated PVA gave rise to homogenous films with a higher CA content that increased the mechanical resistance and stretchability of the films. The melting temperature of this polymer with acetyl groups was lower than the degradation temperature, which makes thermoprocessing feasible. es_ES
dc.description.sponsorship The authors would like to thank the financial support from the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Author Johana Andrade thanks the Departamento de Narino-Colombia y la Fundacion CEIBA for the doctoral grant. The authors also thank the services rendered by the Electron Microscopy Service of the UPV. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Polymer Degradation and Stability es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Molecular weight es_ES
dc.subject Degree of hydrolysis es_ES
dc.subject Thermal behaviour es_ES
dc.subject Cross-linking es_ES
dc.subject Food packaging es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.polymdegradstab.2020.109282 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Andrade, J.; González Martínez, MC.; Chiralt Boix, MA. (2020). Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics. Polymer Degradation and Stability. 179:1-11. https://doi.org/10.1016/j.polymdegradstab.2020.109282 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.polymdegradstab.2020.109282 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 179 es_ES
dc.relation.pasarela S\418909 es_ES
dc.contributor.funder Fundación Ceiba, Colombia es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bhagabati, P., Hazarika, D., & Katiyar, V. (2019). Tailor-made ultra-crystalline, high molecular weight poly(ε-caprolactone) films with improved oxygen gas barrier and optical properties: a facile and scalable approach. International Journal of Biological Macromolecules, 124, 1040-1052. doi:10.1016/j.ijbiomac.2018.11.199 es_ES
dc.description.references Bai, Z., Shi, K., Su, T., & Wang, Z. (2018). Correlation between the chemical structure and enzymatic hydrolysis of Poly(butylene succinate), Poly(butylene adipate), and Poly(butylene suberate). Polymer Degradation and Stability, 158, 111-118. doi:10.1016/j.polymdegradstab.2018.10.024 es_ES
dc.description.references Cano, A., Fortunati, E., Cháfer, M., Kenny, J. M., Chiralt, A., & González-Martínez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84-93. doi:10.1016/j.foodhyd.2015.01.008 es_ES
dc.description.references Kahvand, F., & Fasihi, M. (2019). Plasticizing and anti-plasticizing effects of polyvinyl alcohol in blend with thermoplastic starch. International Journal of Biological Macromolecules, 140, 775-781. doi:10.1016/j.ijbiomac.2019.08.185 es_ES
dc.description.references Aydın, A. A., & Ilberg, V. (2016). Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol:starch blends. Carbohydrate Polymers, 136, 441-448. doi:10.1016/j.carbpol.2015.08.093 es_ES
dc.description.references Domene-López, D., Guillén, M. M., Martin-Gullon, I., García-Quesada, J. C., & Montalbán, M. G. (2018). Study of the behavior of biodegradable starch/polyvinyl alcohol/rosin blends. Carbohydrate Polymers, 202, 299-305. doi:10.1016/j.carbpol.2018.08.137 es_ES
dc.description.references Hilmi, F. F., Wahit, M. ., Shukri, N. ., Ghazali, Z., & Zanuri, A. Z. (2019). Physico-chemical properties of biodegradable films of polyvinyl alcohol/sago starch for food packaging. Materials Today: Proceedings, 16, 1819-1824. doi:10.1016/j.matpr.2019.06.056 es_ES
dc.description.references Tian, H., Yan, J., Rajulu, A. V., Xiang, A., & Luo, X. (2017). Fabrication and properties of polyvinyl alcohol/starch blend films: Effect of composition and humidity. International Journal of Biological Macromolecules, 96, 518-523. doi:10.1016/j.ijbiomac.2016.12.067 es_ES
dc.description.references Lara, B. R. B., Araújo, A. C. M. A., Dias, M. V., Guimarães, M., Santos, T. A., Ferreira, L. F., & Borges, S. V. (2019). Morphological, mechanical and physical properties of new whey protein isolate/ polyvinyl alcohol blends for food flexible packaging. Food Packaging and Shelf Life, 19, 16-23. doi:10.1016/j.fpsl.2018.11.010 es_ES
dc.description.references Ghaderi, J., Hosseini, S. F., Keyvani, N., & Gómez-Guillén, M. C. (2019). Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocolloids, 95, 122-132. doi:10.1016/j.foodhyd.2019.04.021 es_ES
dc.description.references Tang, Y.-F., Du, Y.-M., Hu, X.-W., Shi, X.-W., & Kennedy, J. F. (2007). Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydrate Polymers, 67(4), 491-499. doi:10.1016/j.carbpol.2006.06.015 es_ES
dc.description.references Thanyacharoen, T., Chuysinuan, P., Techasakul, S., Nooeaid, P., & Ummartyotin, S. (2018). Development of a gallic acid-loaded chitosan and polyvinyl alcohol hydrogel composite: Release characteristics and antioxidant activity. International Journal of Biological Macromolecules, 107, 363-370. doi:10.1016/j.ijbiomac.2017.09.002 es_ES
dc.description.references Ghorpade, V. S., Dias, R. J., Mali, K. K., & Mulla, S. I. (2019). Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs. Journal of Drug Delivery Science and Technology, 52, 421-430. doi:10.1016/j.jddst.2019.05.013 es_ES
dc.description.references Cazón, P., Velázquez, G., & Vázquez, M. (2019). Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydrate Polymers, 216, 72-85. doi:10.1016/j.carbpol.2019.03.093 es_ES
dc.description.references Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001 es_ES
dc.description.references Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. doi:10.1016/j.tifs.2013.10.008 es_ES
dc.description.references Mousavi Khaneghah, A., Hashemi, S. M. B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19. doi:10.1016/j.fbp.2018.05.001 es_ES
dc.description.references Kavoosi, G., Nateghpoor, B., Dadfar, S. M. M., & Dadfar, S. M. A. (2014). Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material. Journal of Applied Polymer Science, 131(20), n/a-n/a. doi:10.1002/app.40937 es_ES
dc.description.references Chen, C., Xu, Z., Ma, Y., Liu, J., Zhang, Q., Tang, Z., … Xie, J. (2018). Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control, 88, 105-112. doi:10.1016/j.foodcont.2017.12.039 es_ES
dc.description.references Chenwei, C., Zhipeng, T., Yarui, M., Weiqiang, Q., Fuxin, Y., Jun, M., & Jing, X. (2018). Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly(vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Progress in Organic Coatings, 123, 176-184. doi:10.1016/j.porgcoat.2018.07.001 es_ES
dc.description.references Ma, Q., Ren, Y., & Wang, L. (2017). Investigation of antioxidant activity and release kinetics of curcumin from tara gum/ polyvinyl alcohol active film. Food Hydrocolloids, 70, 286-292. doi:10.1016/j.foodhyd.2017.04.018 es_ES
dc.description.references Yoon, S.-D., Kim, Y.-M., Kim, B. I., & Je, J.-Y. (2017). Preparation and antibacterial activities of chitosan-gallic acid/polyvinyl alcohol blend film by LED-UV irradiation. Journal of Photochemistry and Photobiology B: Biology, 176, 145-149. doi:10.1016/j.jphotobiol.2017.09.024 es_ES
dc.description.references Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290-297. doi:10.1016/j.foodhyd.2012.03.005 es_ES
dc.description.references Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075 es_ES
dc.description.references Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006 es_ES
dc.description.references Song, X., Zuo, G., & Chen, F. (2018). Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International Journal of Biological Macromolecules, 107, 1302-1309. doi:10.1016/j.ijbiomac.2017.09.114 es_ES
dc.description.references Wiśniewska, M., Bogatyrov, V., Ostolska, I., Szewczuk-Karpisz, K., Terpiłowski, K., & Nosal-Wiercińska, A. (2015). Impact of poly(vinyl alcohol) adsorption on the surface characteristics of mixed oxide Mn x O y –SiO2. Adsorption, 22(4-6), 417-423. doi:10.1007/s10450-015-9696-2 es_ES
dc.description.references Tampau, A., González-Martínez, C., & Chiralt, A. (2020). Polyvinyl alcohol-based materials encapsulating carvacrol obtained by solvent casting and electrospinning. Reactive and Functional Polymers, 153, 104603. doi:10.1016/j.reactfunctpolym.2020.104603 es_ES
dc.description.references Abral, H., Hartono, A., Hafizulhaq, F., Handayani, D., Sugiarti, E., & Pradipta, O. (2019). Characterization of PVA/cassava starch biocomposites fabricated with and without sonication using bacterial cellulose fiber loadings. Carbohydrate Polymers, 206, 593-601. doi:10.1016/j.carbpol.2018.11.054 es_ES
dc.description.references Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. doi:10.1016/j.foodhyd.2018.02.028 es_ES
dc.description.references Buendía−Moreno, L., Sánchez−Martínez, M. J., Antolinos, V., Ros−Chumillas, M., Navarro−Segura, L., Soto−Jover, S., … López−Gómez, A. (2020). Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or halloysite nanotubes. A case study for fresh tomato storage. Food Control, 107, 106763. doi:10.1016/j.foodcont.2019.106763 es_ES
dc.description.references Neira, L. M., Martucci, J. F., Stejskal, N., & Ruseckaite, R. A. (2019). Time-dependent evolution of properties of fish gelatin edible films enriched with carvacrol during storage. Food Hydrocolloids, 94, 304-310. doi:10.1016/j.foodhyd.2019.03.020 es_ES
dc.description.references Trindade, G. G. G., Thrivikraman, G., Menezes, P. P., França, C. M., Lima, B. S., Carvalho, Y. M. B. G., … Araújo, A. A. S. (2019). Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food and Chemical Toxicology, 125, 198-209. doi:10.1016/j.fct.2019.01.003 es_ES
dc.description.references Wang, H.-Y., Lu, S.-S., & Lun, Z.-R. (2009). Glass transition behavior of the vitrification solutions containing propanediol, dimethyl sulfoxide and polyvinyl alcohol. Cryobiology, 58(1), 115-117. doi:10.1016/j.cryobiol.2008.10.131 es_ES
dc.description.references Rimez, B., Rahier, H., Van Assche, G., Artoos, T., Biesemans, M., & Van Mele, B. (2008). The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part I: Experimental study of the degradation mechanism. Polymer Degradation and Stability, 93(4), 800-810. doi:10.1016/j.polymdegradstab.2008.01.010 es_ES
dc.description.references Rimez, B., Rahier, H., Van Assche, G., Artoos, T., & Van Mele, B. (2008). The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), Part II: Modelling the degradation kinetics. Polymer Degradation and Stability, 93(6), 1222-1230. doi:10.1016/j.polymdegradstab.2008.01.021 es_ES
dc.description.references Cristancho, D., Zhou, Y., Cooper, R., Huitink, D., Aksoy, F., Liu, Z., … Seminario, J. M. (2013). Degradation of polyvinyl alcohol under mechanothermal stretching. Journal of Molecular Modeling, 19(8), 3245-3253. doi:10.1007/s00894-013-1828-6 es_ES
dc.description.references Safna Hussan, K. P., Thayyil, M. S., Jinitha, T. V., & Kolte, J. (2019). Development of an ionogel membrane PVA/[EMIM] [SCN] with enhanced thermal stability and ionic conductivity for electrochemical application. Journal of Molecular Liquids, 274, 402-413. doi:10.1016/j.molliq.2018.10.128 es_ES
dc.description.references Restrepo, I., Medina, C., Meruane, V., Akbari-Fakhrabadi, A., Flores, P., & Rodríguez-Llamazares, S. (2018). The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends. Polímeros, 28(2), 169-177. doi:10.1590/0104-1428.03117 es_ES
dc.description.references Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094 es_ES
dc.description.references Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384-391. doi:10.1016/j.jfoodeng.2010.03.004 es_ES
dc.description.references Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193-198. doi:10.1016/j.foodchem.2009.10.006 es_ES
dc.description.references Valencia-Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979-987. doi:10.1002/pi.5143 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem