- -

A Phase-Type Distribution for the Sum of Two Concatenated Markov Processes Application to the Analysis Survival in Bladder Cancer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Phase-Type Distribution for the Sum of Two Concatenated Markov Processes Application to the Analysis Survival in Bladder Cancer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Mora, María Belén es_ES
dc.contributor.author Santamaria Navarro, Cristina es_ES
dc.contributor.author Rubio Navarro, Gregorio es_ES
dc.date.accessioned 2021-02-24T04:31:34Z
dc.date.available 2021-02-24T04:31:34Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162237
dc.description.abstract [EN] Stochastic processes are useful and important for modeling the evolution of processes that take different states over time, a situation frequently found in fields such as medical research and engineering. In a previous paper and within this framework, we developed the sum of two independent phase-type (PH)-distributed variables, each of them being associated with a Markovian process of one absorbing state. In that analysis, we computed the distribution function, and its associated survival function, of the sum of both variables, also PH-distributed. In this work, in one more step, we have developed a first approximation of that distribution function in order to avoid the calculation of an inverse matrix for the possibility of a bad conditioning of the matrix, involved in the expression of the distribution function in the previous paper. Next, in a second step, we improve this result, giving a second, more accurate approximation. Two numerical applications, one with simulated data and the other one with bladder cancer data, are used to illustrate the two proposed approaches to the distribution function. We compare and argue the accuracy and precision of each one of them by means of their error bound and the application to real data of bladder cancer. es_ES
dc.description.sponsorship This paper has been supported by the Generalitat Valenciana grant AICO/2020/114. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Mathematics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bladder cancer es_ES
dc.subject Fréchet derivative es_ES
dc.subject Kronecker product es_ES
dc.subject Markov process es_ES
dc.subject Phase-type distribution es_ES
dc.subject Survival analysis es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A Phase-Type Distribution for the Sum of Two Concatenated Markov Processes Application to the Analysis Survival in Bladder Cancer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/math8122099 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2020%2F114/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation García Mora, MB.; Santamaria Navarro, C.; Rubio Navarro, G. (2020). A Phase-Type Distribution for the Sum of Two Concatenated Markov Processes Application to the Analysis Survival in Bladder Cancer. Mathematics. 8(12):1-15. https://doi.org/10.3390/math8122099 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/math8122099 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2227-7390 es_ES
dc.relation.pasarela S\423432 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Rodríguez, J., Lillo, R. E., & Ramírez-Cobo, P. (2015). Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process. Reliability Engineering & System Safety, 134, 126-133. doi:10.1016/j.ress.2014.10.020 es_ES
dc.description.references García‐Mora, B., Santamaría, C., & Rubio, G. (2020). Markovian modeling for dependent interrecurrence times in bladder cancer. Mathematical Methods in the Applied Sciences, 43(14), 8302-8310. doi:10.1002/mma.6593 es_ES
dc.description.references Montoro-Cazorla, D., & Pérez-Ocón, R. (2014). Matrix stochastic analysis of the maintainability of a machine under shocks. Reliability Engineering & System Safety, 121, 11-17. doi:10.1016/j.ress.2013.07.002 es_ES
dc.description.references Fackrell, M. (2008). Modelling healthcare systems with phase-type distributions. Health Care Management Science, 12(1), 11-26. doi:10.1007/s10729-008-9070-y es_ES
dc.description.references Garg, L., McClean, S., Meenan, B. J., & Millard, P. (2011). Phase-Type Survival Trees and Mixed Distribution Survival Trees for Clustering Patients’ Hospital Length of Stay. Informatica, 22(1), 57-72. doi:10.15388/informatica.2011.314 es_ES
dc.description.references Marshall, A. H., & McClean, S. I. (2003). Conditional phase-type distributions for modelling patient length of stay in hospital. International Transactions in Operational Research, 10(6), 565-576. doi:10.1111/1475-3995.00428 es_ES
dc.description.references Marshall, A. H., & McClean, S. I. (2004). Using Coxian Phase-Type Distributions to Identify Patient Characteristics for Duration of Stay in Hospital. Health Care Management Science, 7(4), 285-289. doi:10.1007/s10729-004-7537-z es_ES
dc.description.references Fackrell, M. (2012). A semi-infinite programming approach to identifying matrix-exponential distributions. International Journal of Systems Science, 43(9), 1623-1631. doi:10.1080/00207721.2010.549582 es_ES
dc.description.references García-Mora, B., Santamaría, C., Rubio, G., & Pontones, J. L. (2013). Computing survival functions of the sum of two independent Markov processes: an application to bladder carcinoma treatment. International Journal of Computer Mathematics, 91(2), 209-220. doi:10.1080/00207160.2013.765560 es_ES
dc.description.references Kenney, C., & Laub, A. J. (1989). Condition Estimates for Matrix Functions. SIAM Journal on Matrix Analysis and Applications, 10(2), 191-209. doi:10.1137/0610014 es_ES
dc.description.references Jackson, C. H. (2011). Multi-State Models for Panel Data: ThemsmPackage forR. Journal of Statistical Software, 38(8). doi:10.18637/jss.v038.i08 es_ES
dc.description.references Mullin, L., & Raynolds, J. (2014). Scalable, Portable, Verifiable Kronecker Products on Multi-scale Computers. Studies in Computational Intelligence, 111-129. doi:10.1007/978-3-319-04280-0_14 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem