- -

A Phase-Type Distribution for the Sum of Two Concatenated Markov Processes Application to the Analysis Survival in Bladder Cancer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Phase-Type Distribution for the Sum of Two Concatenated Markov Processes Application to the Analysis Survival in Bladder Cancer

Mostrar el registro completo del ítem

García Mora, MB.; Santamaria Navarro, C.; Rubio Navarro, G. (2020). A Phase-Type Distribution for the Sum of Two Concatenated Markov Processes Application to the Analysis Survival in Bladder Cancer. Mathematics. 8(12):1-15. https://doi.org/10.3390/math8122099

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162237

Ficheros en el ítem

Metadatos del ítem

Título: A Phase-Type Distribution for the Sum of Two Concatenated Markov Processes Application to the Analysis Survival in Bladder Cancer
Autor: García Mora, María Belén Santamaria Navarro, Cristina Rubio Navarro, Gregorio
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Stochastic processes are useful and important for modeling the evolution of processes that take different states over time, a situation frequently found in fields such as medical research and engineering. In a previous ...[+]
Palabras clave: Bladder cancer , Fréchet derivative , Kronecker product , Markov process , Phase-type distribution , Survival analysis
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8122099
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8122099
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//AICO%2F2020%2F114/
Agradecimientos:
This paper has been supported by the Generalitat Valenciana grant AICO/2020/114.
Tipo: Artículo

References

Rodríguez, J., Lillo, R. E., & Ramírez-Cobo, P. (2015). Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process. Reliability Engineering & System Safety, 134, 126-133. doi:10.1016/j.ress.2014.10.020

García‐Mora, B., Santamaría, C., & Rubio, G. (2020). Markovian modeling for dependent interrecurrence times in bladder cancer. Mathematical Methods in the Applied Sciences, 43(14), 8302-8310. doi:10.1002/mma.6593

Montoro-Cazorla, D., & Pérez-Ocón, R. (2014). Matrix stochastic analysis of the maintainability of a machine under shocks. Reliability Engineering & System Safety, 121, 11-17. doi:10.1016/j.ress.2013.07.002 [+]
Rodríguez, J., Lillo, R. E., & Ramírez-Cobo, P. (2015). Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process. Reliability Engineering & System Safety, 134, 126-133. doi:10.1016/j.ress.2014.10.020

García‐Mora, B., Santamaría, C., & Rubio, G. (2020). Markovian modeling for dependent interrecurrence times in bladder cancer. Mathematical Methods in the Applied Sciences, 43(14), 8302-8310. doi:10.1002/mma.6593

Montoro-Cazorla, D., & Pérez-Ocón, R. (2014). Matrix stochastic analysis of the maintainability of a machine under shocks. Reliability Engineering & System Safety, 121, 11-17. doi:10.1016/j.ress.2013.07.002

Fackrell, M. (2008). Modelling healthcare systems with phase-type distributions. Health Care Management Science, 12(1), 11-26. doi:10.1007/s10729-008-9070-y

Garg, L., McClean, S., Meenan, B. J., & Millard, P. (2011). Phase-Type Survival Trees and Mixed Distribution Survival Trees for Clustering Patients’ Hospital Length of Stay. Informatica, 22(1), 57-72. doi:10.15388/informatica.2011.314

Marshall, A. H., & McClean, S. I. (2003). Conditional phase-type distributions for modelling patient length of stay in hospital. International Transactions in Operational Research, 10(6), 565-576. doi:10.1111/1475-3995.00428

Marshall, A. H., & McClean, S. I. (2004). Using Coxian Phase-Type Distributions to Identify Patient Characteristics for Duration of Stay in Hospital. Health Care Management Science, 7(4), 285-289. doi:10.1007/s10729-004-7537-z

Fackrell, M. (2012). A semi-infinite programming approach to identifying matrix-exponential distributions. International Journal of Systems Science, 43(9), 1623-1631. doi:10.1080/00207721.2010.549582

García-Mora, B., Santamaría, C., Rubio, G., & Pontones, J. L. (2013). Computing survival functions of the sum of two independent Markov processes: an application to bladder carcinoma treatment. International Journal of Computer Mathematics, 91(2), 209-220. doi:10.1080/00207160.2013.765560

Kenney, C., & Laub, A. J. (1989). Condition Estimates for Matrix Functions. SIAM Journal on Matrix Analysis and Applications, 10(2), 191-209. doi:10.1137/0610014

Jackson, C. H. (2011). Multi-State Models for Panel Data: ThemsmPackage forR. Journal of Statistical Software, 38(8). doi:10.18637/jss.v038.i08

Mullin, L., & Raynolds, J. (2014). Scalable, Portable, Verifiable Kronecker Products on Multi-scale Computers. Studies in Computational Intelligence, 111-129. doi:10.1007/978-3-319-04280-0_14

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem