- -

Biodegradability and disintegration of multilayer starch films with electrospun PCL fibres encapsulating carvacrol

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Biodegradability and disintegration of multilayer starch films with electrospun PCL fibres encapsulating carvacrol

Show full item record

Tampau, A.; González Martínez, MC.; Chiralt Boix, MA. (2020). Biodegradability and disintegration of multilayer starch films with electrospun PCL fibres encapsulating carvacrol. Polymer Degradation and Stability. 173:1-8. https://doi.org/10.1016/j.polymdegradstab.2020.109100

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162243

Files in this item

Item Metadata

Title: Biodegradability and disintegration of multilayer starch films with electrospun PCL fibres encapsulating carvacrol
Author: Tampau, Alina González Martínez, María Consuelo Chiralt Boix, Mª Amparo
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Issued date:
Embargo end date: 2022-02-04
Abstract:
[EN] The biodegradation and disintegration of thermoplastic starch multilayers containing carvacrol(CA)-loaded poly-(epsilon-caprolactone) electrospun mats were evaluated under thermophilic composting conditions for 45 and ...[+]
Subjects: Thermoplastic starch , Poly-(epsilon-caprolactone) , Carvacrol , TGA , Disintegration , Biodegradation
Copyrigths: Embargado
Source:
Polymer Degradation and Stability. (issn: 0141-3910 )
DOI: 10.1016/j.polymdegradstab.2020.109100
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.polymdegradstab.2020.109100
Project ID:
info:eu-repo/grantAgreement/MINECO//BES-2014-068100/ES/BES-2014-068100/
AEI/AGL2016-76699-R
Thanks:
The authors thank the Ministerio de Economia y Competitividad (MINECO, Spain) for funding this study through the pre-doctoral grant BES-2014-068100 and through the investigation project AGL2016-76699-R.
Type: Artículo

References

Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153-2166. doi:10.1098/rstb.2009.0053

Jahan, S., Strezov, V., Weldekidan, H., Kumar, R., Kan, T., Sarkodie, S. A., … Wilson, S. P. (2019). Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Science of The Total Environment, 695, 133924. doi:10.1016/j.scitotenv.2019.133924

Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., … Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177-184. doi:10.1016/j.envpol.2016.04.012 [+]
Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153-2166. doi:10.1098/rstb.2009.0053

Jahan, S., Strezov, V., Weldekidan, H., Kumar, R., Kan, T., Sarkodie, S. A., … Wilson, S. P. (2019). Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Science of The Total Environment, 695, 133924. doi:10.1016/j.scitotenv.2019.133924

Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., … Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177-184. doi:10.1016/j.envpol.2016.04.012

Renzi, M., Guerranti, C., & Blašković, A. (2018). Microplastic contents from maricultured and natural mussels. Marine Pollution Bulletin, 131, 248-251. doi:10.1016/j.marpolbul.2018.04.035

Santana, M. F. M., Ascer, L. G., Custódio, M. R., Moreira, F. T., & Turra, A. (2016). Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Marine Pollution Bulletin, 106(1-2), 183-189. doi:10.1016/j.marpolbul.2016.02.074

Watts, A. J. R., Urbina, M. A., Corr, S., Lewis, C., & Galloway, T. S. (2015). Ingestion of Plastic Microfibers by the Crab Carcinus maenas and Its Effect on Food Consumption and Energy Balance. Environmental Science & Technology, 49(24), 14597-14604. doi:10.1021/acs.est.5b04026

Jinhui, S., Sudong, X., Yan, N., Xia, P., Jiahao, Q., & Yongjian, X. (2019). Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the yellow seahorse, Hippocampus kuda Bleeker. Marine Pollution Bulletin, 149, 110510. doi:10.1016/j.marpolbul.2019.110510

Qiao, R., Deng, Y., Zhang, S., Wolosker, M. B., Zhu, Q., Ren, H., & Zhang, Y. (2019). Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere, 236, 124334. doi:10.1016/j.chemosphere.2019.07.065

Heimowska, A., Morawska, M., & Bocho-Janiszewska, A. (2017). Biodegradation of poly(ε-caprolactone) in natural water environments. Polish Journal of Chemical Technology, 19(1), 120-126. doi:10.1515/pjct-2017-0017

Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt., A. (2015). Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10-20. doi:10.1016/j.fpsl.2015.04.001

Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 79, 158-169. doi:10.1016/j.foodhyd.2017.12.021

Tampau, A., González-Martinez, C., & Chiralt, A. (2017). Carvacrol encapsulation in starch or PCL based matrices by electrospinning. Journal of Food Engineering, 214, 245-256. doi:10.1016/j.jfoodeng.2017.07.005

Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513-519. doi:10.1016/j.jfoodeng.2011.10.031

Ben Arfa, A., Preziosi-Belloy, L., Chalier, P., & Gontard, N. (2007). Antimicrobial Paper Based on a Soy Protein Isolate or Modified Starch Coating Including Carvacrol and Cinnamaldehyde. Journal of Agricultural and Food Chemistry, 55(6), 2155-2162. doi:10.1021/jf0626009

Ultee, A., Bennik, M. H. J., & Moezelaar, R. (2002). The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561-1568. doi:10.1128/aem.68.4.1561-1568.2002

Tunc, S., Chollet, E., Chalier, P., Preziosi-Belloy, L., & Gontard, N. (2007). Combined effect of volatile antimicrobial agents on the growth of Penicillium notatum. International Journal of Food Microbiology, 113(3), 263-270. doi:10.1016/j.ijfoodmicro.2006.07.004

Tepe, B., Sokmen, M., Akpulat, H. A., Daferera, D., Polissiou, M., & Sokmen, A. (2005). Antioxidative activity of the essential oils of Thymus sipyleus subsp. sipyleus var. sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans. Journal of Food Engineering, 66(4), 447-454. doi:10.1016/j.jfoodeng.2004.04.015

Gursul, S., Karabulut, I., & Durmaz, G. (2019). Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chemistry, 278, 805-810. doi:10.1016/j.foodchem.2018.11.134

(2012). Scientific Opinion on the safety and efficacy of phenol derivatives containing ring-alkyl, ring-alkoxy and side-chains with an oxygenated functional group (chemical group 25) when used as flavourings for all species. EFSA Journal, 10(2), 2573. doi:10.2903/j.efsa.2012.2573

Kavoosi, G., Dadfar, S. M. M., Mohammadi Purfard, A., & Mehrabi, R. (2013). Antioxidant and Antibacterial Properties of Gelatin Films Incorporated with Carvacrol. Journal of Food Safety, 33(4), 423-432. doi:10.1111/jfs.12071

López-Mata, M., Ruiz-Cruz, S., Silva-Beltrán, N., Ornelas-Paz, J., Zamudio-Flores, P., & Burruel-Ibarra, S. (2013). Physicochemical, Antimicrobial and Antioxidant Properties of Chitosan Films Incorporated with Carvacrol. Molecules, 18(11), 13735-13753. doi:10.3390/molecules181113735

Higueras, L., López-Carballo, G., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films. International Journal of Food Microbiology, 188, 53-59. doi:10.1016/j.ijfoodmicro.2014.07.018

Balaguer, M. P., Villanova, J., Cesar, G., Gavara, R., & Hernandez-Munoz, P. (2015). Compostable properties of antimicrobial bioplastics based on cinnamaldehyde cross-linked gliadins. Chemical Engineering Journal, 262, 447-455. doi:10.1016/j.cej.2014.09.099

Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Biodegradation behavior of starch-PVA films as affected by the incorporation of different antimicrobials. Polymer Degradation and Stability, 132, 11-20. doi:10.1016/j.polymdegradstab.2016.04.014

Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Eugenol incorporation into thermoprocessed starch films using different encapsulating materials. Food Packaging and Shelf Life, 21, 100326. doi:10.1016/j.fpsl.2019.100326

Castro-Aguirre, E., Auras, R., Selke, S., Rubino, M., & Marsh, T. (2017). Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polymer Degradation and Stability, 137, 251-271. doi:10.1016/j.polymdegradstab.2017.01.017

Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Reinforcement of Thermoplastic Starch Films with Cellulose Fibres Obtained from Rice and Coffee Husks. Journal of Renewable Materials, 6(7), 599-610. doi:10.32604/jrm.2018.00127

Sreekumar, P. A., Al-Harthi, M. A., & De, S. K. (2012). Studies on compatibility of biodegradable starch/polyvinyl alcohol blends. Polymer Engineering & Science, 52(10), 2167-2172. doi:10.1002/pen.23178

Singh, R. ., Pandey, J. ., Rutot, D., Degée, P., & Dubois, P. (2003). Biodegradation of poly(ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydrate Research, 338(17), 1759-1769. doi:10.1016/s0008-6215(03)00236-2

Yang, H.-S., Yoon, J.-S., & Kim, M.-N. (2005). Dependence of biodegradability of plastics in compost on the shape of specimens. Polymer Degradation and Stability, 87(1), 131-135. doi:10.1016/j.polymdegradstab.2004.07.016

Murphy, C. A., Cameron, J. A., Huang, S. J., & Vinopal, R. T. (1996). Fusarium polycaprolactone depolymerase is cutinase. Applied and Environmental Microbiology, 62(2), 456-460. doi:10.1128/aem.62.2.456-460.1996

Murphy, C. A., Cameron, J. A., Huang, S. J., & Vinopal, R. T. (1998). A second polycaprolactone depolymerase from Fusarium , a lipase distinct from cutinase. Applied Microbiology and Biotechnology, 50(6), 692-696. doi:10.1007/s002530051352

Tokiwa, Y., Calabia, B., Ugwu, C., & Aiba, S. (2009). Biodegradability of Plastics. International Journal of Molecular Sciences, 10(9), 3722-3742. doi:10.3390/ijms10093722

Banerjee, A., Chatterjee, K., & Madras, G. (2015). Enzymatic degradation of polycaprolactone–gelatin blend. Materials Research Express, 2(4), 045303. doi:10.1088/2053-1591/2/4/045303

Shen, J., & Bartha, R. (1997). Priming effect of glucose polymers in soil-based biodegradation tests. Soil Biology and Biochemistry, 29(8), 1195-1198. doi:10.1016/s0038-0717(97)00031-x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record