- -

Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations

Mostrar el registro completo del ítem

Singh, S.; Martínez Molada, E.; Kumar, A.; Gupta, DK. (2020). Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations. Mathematics. 8(3):1-11. https://doi.org/10.3390/math8030384

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162244

Ficheros en el ítem

Metadatos del ítem

Título: Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations
Autor: Singh, Sukhjit Martínez Molada, Eulalia Kumar, Abhimanyu Gupta, D. K.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this work, we performed an study about the domain of existence and uniqueness for an efficient fifth order iterative method for solving nonlinear problems treated in their infinite dimensional form. The hypotheses ...[+]
Palabras clave: Semilocal convergence , Lipschitz condition , Holder condition , Hammerstein integral equation , Dynamical systems
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8030384
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8030384
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22.
Tipo: Artículo

References

Hernández, M. A. (2001). Chebyshev’s approximation algorithms and applications. Computers & Mathematics with Applications, 41(3-4), 433-445. doi:10.1016/s0898-1221(00)00286-8

Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050

Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005 [+]
Hernández, M. A. (2001). Chebyshev’s approximation algorithms and applications. Computers & Mathematics with Applications, 41(3-4), 433-445. doi:10.1016/s0898-1221(00)00286-8

Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050

Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005

Hueso, J. L., & Martínez, E. (2013). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms, 67(2), 365-384. doi:10.1007/s11075-013-9795-7

Zhao, Y., & Wu, Q. (2008). Newton–Kantorovich theorem for a family of modified Halley’s method under Hölder continuity conditions in Banach space. Applied Mathematics and Computation, 202(1), 243-251. doi:10.1016/j.amc.2008.02.004

Parida, P. K., & Gupta, D. K. (2007). Recurrence relations for a Newton-like method in Banach spaces. Journal of Computational and Applied Mathematics, 206(2), 873-887. doi:10.1016/j.cam.2006.08.027

Parida, P. K., & Gupta, D. K. (2008). Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces. Journal of Mathematical Analysis and Applications, 345(1), 350-361. doi:10.1016/j.jmaa.2008.03.064

Cordero, A., Ezquerro, J. A., Hernández-Verón, M. A., & Torregrosa, J. R. (2015). On the local convergence of a fifth-order iterative method in Banach spaces. Applied Mathematics and Computation, 251, 396-403. doi:10.1016/j.amc.2014.11.084

Argyros, I. K., & Hilout, S. (2013). On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 245, 1-9. doi:10.1016/j.cam.2012.12.002

Argyros, I. K., George, S., & Magreñán, Á. A. (2015). Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high convergence order. Journal of Computational and Applied Mathematics, 282, 215-224. doi:10.1016/j.cam.2014.12.023

Wang, X., Kou, J., & Gu, C. (2012). Semilocal Convergence of a Class of Modified Super-Halley Methods in Banach Spaces. Journal of Optimization Theory and Applications, 153(3), 779-793. doi:10.1007/s10957-012-9985-9

Argyros, I. K., & Magreñán, Á. A. (2015). A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative. Numerical Algorithms, 71(1), 1-23. doi:10.1007/s11075-015-9981-x

Wu, Q., & Zhao, Y. (2007). Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method. Applied Mathematics and Computation, 192(2), 405-412. doi:10.1016/j.amc.2007.03.018

Martínez, E., Singh, S., Hueso, J. L., & Gupta, D. K. (2016). Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Applied Mathematics and Computation, 281, 252-265. doi:10.1016/j.amc.2016.01.036

Kumar, A., Gupta, D. K., Martínez, E., & Singh, S. (2018). Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. Journal of Computational and Applied Mathematics, 330, 732-741. doi:10.1016/j.cam.2017.02.042

Singh, S., Gupta, D. K., Martínez, E., & Hueso, J. L. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics, 13(6), 4219-4235. doi:10.1007/s00009-016-0741-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem