Hernández, M. A. (2001). Chebyshev’s approximation algorithms and applications. Computers & Mathematics with Applications, 41(3-4), 433-445. doi:10.1016/s0898-1221(00)00286-8
Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050
Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005
[+]
Hernández, M. A. (2001). Chebyshev’s approximation algorithms and applications. Computers & Mathematics with Applications, 41(3-4), 433-445. doi:10.1016/s0898-1221(00)00286-8
Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050
Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005
Hueso, J. L., & Martínez, E. (2013). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms, 67(2), 365-384. doi:10.1007/s11075-013-9795-7
Zhao, Y., & Wu, Q. (2008). Newton–Kantorovich theorem for a family of modified Halley’s method under Hölder continuity conditions in Banach space. Applied Mathematics and Computation, 202(1), 243-251. doi:10.1016/j.amc.2008.02.004
Parida, P. K., & Gupta, D. K. (2007). Recurrence relations for a Newton-like method in Banach spaces. Journal of Computational and Applied Mathematics, 206(2), 873-887. doi:10.1016/j.cam.2006.08.027
Parida, P. K., & Gupta, D. K. (2008). Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces. Journal of Mathematical Analysis and Applications, 345(1), 350-361. doi:10.1016/j.jmaa.2008.03.064
Cordero, A., Ezquerro, J. A., Hernández-Verón, M. A., & Torregrosa, J. R. (2015). On the local convergence of a fifth-order iterative method in Banach spaces. Applied Mathematics and Computation, 251, 396-403. doi:10.1016/j.amc.2014.11.084
Argyros, I. K., & Hilout, S. (2013). On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 245, 1-9. doi:10.1016/j.cam.2012.12.002
Argyros, I. K., George, S., & Magreñán, Á. A. (2015). Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high convergence order. Journal of Computational and Applied Mathematics, 282, 215-224. doi:10.1016/j.cam.2014.12.023
Wang, X., Kou, J., & Gu, C. (2012). Semilocal Convergence of a Class of Modified Super-Halley Methods in Banach Spaces. Journal of Optimization Theory and Applications, 153(3), 779-793. doi:10.1007/s10957-012-9985-9
Argyros, I. K., & Magreñán, Á. A. (2015). A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative. Numerical Algorithms, 71(1), 1-23. doi:10.1007/s11075-015-9981-x
Wu, Q., & Zhao, Y. (2007). Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method. Applied Mathematics and Computation, 192(2), 405-412. doi:10.1016/j.amc.2007.03.018
Martínez, E., Singh, S., Hueso, J. L., & Gupta, D. K. (2016). Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Applied Mathematics and Computation, 281, 252-265. doi:10.1016/j.amc.2016.01.036
Kumar, A., Gupta, D. K., Martínez, E., & Singh, S. (2018). Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. Journal of Computational and Applied Mathematics, 330, 732-741. doi:10.1016/j.cam.2017.02.042
Singh, S., Gupta, D. K., Martínez, E., & Hueso, J. L. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics, 13(6), 4219-4235. doi:10.1007/s00009-016-0741-5
[-]