- -

Mean square convergent non-standard numerical schemes for linear random differential equations with delay

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mean square convergent non-standard numerical schemes for linear random differential equations with delay

Mostrar el registro completo del ítem

Calatayud, J.; Cortés, J.; Jornet, M.; Rodríguez, F. (2020). Mean square convergent non-standard numerical schemes for linear random differential equations with delay. Mathematics. 8(9):1-17. https://doi.org/10.3390/math8091417

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162250

Ficheros en el ítem

Metadatos del ítem

Título: Mean square convergent non-standard numerical schemes for linear random differential equations with delay
Autor: Calatayud, Julia Cortés, J.-C. Jornet, Marc Rodríguez, Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, we are concerned with the construction of numerical schemes for linear random differential equations with discrete delay. For the linear deterministic differential equation with discrete delay, a recent ...[+]
Palabras clave: Delay random differential equation , Non-standard finite difference method , Mean square convergence
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8091417
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8091417
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/
Agradecimientos:
This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.[+]
Tipo: Artículo

References

Bocharov, G. A., & Rihan, F. A. (2000). Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics, 125(1-2), 183-199. doi:10.1016/s0377-0427(00)00468-4

Jackson, M., & Chen-Charpentier, B. M. (2017). Modeling plant virus propagation with delays. Journal of Computational and Applied Mathematics, 309, 611-621. doi:10.1016/j.cam.2016.04.024

Chen-Charpentier, B. M., & Diakite, I. (2016). A mathematical model of bone remodeling with delays. Journal of Computational and Applied Mathematics, 291, 76-84. doi:10.1016/j.cam.2014.11.025 [+]
Bocharov, G. A., & Rihan, F. A. (2000). Numerical modelling in biosciences using delay differential equations. Journal of Computational and Applied Mathematics, 125(1-2), 183-199. doi:10.1016/s0377-0427(00)00468-4

Jackson, M., & Chen-Charpentier, B. M. (2017). Modeling plant virus propagation with delays. Journal of Computational and Applied Mathematics, 309, 611-621. doi:10.1016/j.cam.2016.04.024

Chen-Charpentier, B. M., & Diakite, I. (2016). A mathematical model of bone remodeling with delays. Journal of Computational and Applied Mathematics, 291, 76-84. doi:10.1016/j.cam.2014.11.025

Kyrychko, Y. N., & Hogan, S. J. (2010). On the Use of Delay Equations in Engineering Applications. Journal of Vibration and Control, 16(7-8), 943-960. doi:10.1177/1077546309341100

Harding, L., & Neamţu, M. (2016). A Dynamic Model of Unemployment with Migration and Delayed Policy Intervention. Computational Economics, 51(3), 427-462. doi:10.1007/s10614-016-9610-3

Mickens, R. E. (2005). Dynamic consistency: a fundamental principle for constructing nonstandard finite difference schemes for differential equations. Journal of Difference Equations and Applications, 11(7), 645-653. doi:10.1080/10236190412331334527

Patidar, K. C. (2016). Nonstandard finite difference methods: recent trends and further developments. Journal of Difference Equations and Applications, 22(6), 817-849. doi:10.1080/10236198.2016.1144748

García, M. A., Castro, M. A., Martín, J. A., & Rodríguez, F. (2018). Exact and nonstandard numerical schemes for linear delay differential models. Applied Mathematics and Computation, 338, 337-345. doi:10.1016/j.amc.2018.06.029

Castro, M. Á., García, M. A., Martín, J. A., & Rodríguez, F. (2019). Exact and Nonstandard Finite Difference Schemes for Coupled Linear Delay Differential Systems. Mathematics, 7(11), 1038. doi:10.3390/math7111038

Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061

Cortés, J.-C., Jódar, L., Roselló, M.-D., & Villafuerte, L. (2012). Solving initial and two-point boundary value linear random differential equations: A mean square approach. Applied Mathematics and Computation, 219(4), 2204-2211. doi:10.1016/j.amc.2012.08.066

Calatayud, J., Cortés, J.-C., Jornet, M., & Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1848-8

Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation. Mediterranean Journal of Mathematics, 16(3). doi:10.1007/s00009-019-1338-6

Licea, J. A., Villafuerte, L., & Chen-Charpentier, B. M. (2013). Analytic and numerical solutions of a Riccati differential equation with random coefficients. Journal of Computational and Applied Mathematics, 239, 208-219. doi:10.1016/j.cam.2012.09.040

Burgos, C., Calatayud, J., Cortés, J.-C., & Villafuerte, L. (2018). Solving a class of random non-autonomous linear fractional differential equations by means of a generalized mean square convergent power series. Applied Mathematics Letters, 78, 95-104. doi:10.1016/j.aml.2017.11.009

Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). Random differential equations with discrete delay. Stochastic Analysis and Applications, 37(5), 699-707. doi:10.1080/07362994.2019.1608833

Calatayud, J., Cortés, J.-C., & Jornet, M. (2019). $$\mathrm {L}^p$$-calculus Approach to the Random Autonomous Linear Differential Equation with Discrete Delay. Mediterranean Journal of Mathematics, 16(4). doi:10.1007/s00009-019-1370-6

Cortés, J. C., & Jornet, M. (2020). Lp-Solution to the Random Linear Delay Differential Equation with a Stochastic Forcing Term. Mathematics, 8(6), 1013. doi:10.3390/math8061013

Caraballo, T., Cortés, J.-C., & Navarro-Quiles, A. (2019). Applying the random variable transformation method to solve a class of random linear differential equation with discrete delay. Applied Mathematics and Computation, 356, 198-218. doi:10.1016/j.amc.2019.03.048

Cortés, J. C., Jódar, L., & Villafuerte, L. (2007). Numerical solution of random differential equations: A mean square approach. Mathematical and Computer Modelling, 45(7-8), 757-765. doi:10.1016/j.mcm.2006.07.017

Cortés, J. C., Jódar, L., & Villafuerte, L. (2007). Mean square numerical solution of random differential equations: Facts and possibilities. Computers & Mathematics with Applications, 53(7), 1098-1106. doi:10.1016/j.camwa.2006.05.030

El-Tawil, M. A. (2005). The approximate solutions of some stochastic differential equations using transformations. Applied Mathematics and Computation, 164(1), 167-178. doi:10.1016/j.amc.2004.04.062

Calatayud, J., Cortés, J.-C., Díaz, J. A., & Jornet, M. (2019). Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem. Stochastics, 92(4), 627-641. doi:10.1080/17442508.2019.1645849

Calatayud, J., Cortés, J.-C., Díaz, J. A., & Jornet, M. (2020). Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme. Applied Numerical Mathematics, 151, 413-424. doi:10.1016/j.apnum.2020.01.012

Burgos, C., Cortés, J.-C., Villafuerte, L., & Villanueva, R.-J. (2020). Mean square convergent numerical solutions of random fractional differential equations: Approximations of moments and density. Journal of Computational and Applied Mathematics, 378, 112925. doi:10.1016/j.cam.2020.112925

Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2

Buckwar, E. (2000). Introduction to the numerical analysis of stochastic delay differential equations. Journal of Computational and Applied Mathematics, 125(1-2), 297-307. doi:10.1016/s0377-0427(00)00475-1

Antonio Dorini, F., & Sampaio, R. (2012). Some Results on the Random Wear Coefficient of the Archard Model. Journal of Applied Mechanics, 79(5). doi:10.1115/1.4006453

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem