Mostrar el registro sencillo del ítem
dc.contributor.author | Carrasco, Pedro | es_ES |
dc.contributor.author | Bendaña, Ricardo | es_ES |
dc.contributor.author | Paredes, Angel | es_ES |
dc.contributor.author | Michinel, Humberto | es_ES |
dc.contributor.author | Fernández de Córdoba, Pedro | es_ES |
dc.contributor.author | Arce, M. Elena | es_ES |
dc.contributor.author | Zaragoza, Sonia | es_ES |
dc.date.accessioned | 2021-02-24T04:32:05Z | |
dc.date.available | 2021-02-24T04:32:05Z | |
dc.date.issued | 2020-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162254 | |
dc.description.abstract | [EN] The purpose of this work is to investigate the effect of environmental variables on the electric energy expenditure of a typical surface warship. Studies with similar objectives are much more frequent for merchant ships, but warship operations have peculiarities that will be emphasized. In particular, they spend large fractions of their life cycle at port, during which the vessel remains active. Firstly, a discussion of the embarked systems is presented, pointing out the importance of auxiliary systems and in particular, heating, ventilation and air conditioning. Quantitative estimates of the energy consumption of those systems are provided. Then, using data taken during real operations of a frigate of the Spanish navy, correlations are computed between power consumption and different environmental variables. As a novelty, the analysis is carried out separating the different modes of operation of the ship. This leads to interesting conclusions, including a considerable positive correlation between sea water temperature and consumption when the vessel is at port. The effect of a moored ship on the surrounding sea water temperature is studied by a numerical computation. The results suggest that the position of sea chests may be consequential for energy efficiency. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by Xunta de Galicia (Grant Number ED431B 2018/57) and by Ministerio de Economia y Competitividad (Grant Numbers FIS2017-83762-P, FPDI-2013-17516, ENE 2013-48015-C3-1-R and RTI2018-102256-B-I00-AR). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Sage | es_ES |
dc.relation.ispartof | Journal of Engineering for the Maritime Environment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Warships | es_ES |
dc.subject | Energy efficiency | es_ES |
dc.subject | Statistical correlations | es_ES |
dc.subject | Heating | es_ES |
dc.subject | Ventilation and air conditioning | es_ES |
dc.subject | Numerical simulation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Analysis of key variables for energy efficiency in warships | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/1475090219864816 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83762-P/ES/SIMULACION OPTICA DE MATERIA OSCURA Y OTROS SISTEMAS DE FISICA FUNDAMENTAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F57/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FPDI-2013-17516/ES/FPDI-2013-17516/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ENE2013-48015-C3-1-R/ES/SISTEMA INTEGRADO PARA LA OPTIMIZACION ENERGETICA Y REDUCCION DE LA HUELLA DE CO2 EN EDIFICIOS: TECNOLOGIAS BIM, INDOOR MAPPING, UAV Y HERRAMIENTAS DE SIMULACION ENERGETICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Carrasco, P.; Bendaña, R.; Paredes, A.; Michinel, H.; Fernández De Córdoba, P.; Arce, ME.; Zaragoza, S. (2020). Analysis of key variables for energy efficiency in warships. Journal of Engineering for the Maritime Environment. 234(1):26-36. https://doi.org/10.1177/1475090219864816 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/1475090219864816 | es_ES |
dc.description.upvformatpinicio | 26 | es_ES |
dc.description.upvformatpfin | 36 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 234 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1475-0902 | es_ES |
dc.relation.pasarela | S\389943 | es_ES |
dc.contributor.funder | Xunta de Galicia | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Agarwal, S., Kahlon, N., Agarwal, P., & Dixit, S. (2017). Relationship between Student’s Family Socio-economic Status, Gap Year/years after Schooling and Self-concept: A Cross-Sectional Study among Medical Students. International Journal of Physiology, 5(1), 21. doi:10.5958/2320-608x.2017.00005.1 | es_ES |
dc.description.references | Jafarzadeh, S., & Utne, I. B. (2014). A framework to bridge the energy efficiency gap in shipping. Energy, 69, 603-612. doi:10.1016/j.energy.2014.03.056 | es_ES |
dc.description.references | Papanikolaou, A., Zaraphonitis, G., Bitner-Gregersen, E., Shigunov, V., Moctar, O. E., Soares, C. G., … Sprenger, F. (2016). Energy Efficient Safe SHip Operation (SHOPERA). Transportation Research Procedia, 14, 820-829. doi:10.1016/j.trpro.2016.05.030 | es_ES |
dc.description.references | Elena Arce, M., Saavedra, Á., Míguez, J. L., & Granada, E. (2015). The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review. Renewable and Sustainable Energy Reviews, 47, 924-932. doi:10.1016/j.rser.2015.03.010 | es_ES |
dc.description.references | Patterson, M. G. (1996). What is energy efficiency? Energy Policy, 24(5), 377-390. doi:10.1016/0301-4215(96)00017-1 | es_ES |
dc.description.references | Figari, M., D’Amico, M., & Gaggero, P. (2011). Evaluation of ship efficiency indexes. Sustainable Maritime Transportation and Exploitation of Sea Resources, 621-627. doi:10.1201/b11810-94 | es_ES |
dc.description.references | Tran, T. A. (2017). A research on the energy efficiency operational indicator EEOI calculation tool on M/V NSU JUSTICE of VINIC transportation company, Vietnam. Journal of Ocean Engineering and Science, 2(1), 55-60. doi:10.1016/j.joes.2017.01.001 | es_ES |
dc.description.references | Coraddu, A., Figari, M., & Savio, S. (2014). Numerical investigation on ship energy efficiency by Monte Carlo simulation. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 228(3), 220-234. doi:10.1177/1475090214524184 | es_ES |
dc.description.references | STEPANCHICK, J., & BROWN, A. (2007). Revisiting DDGX/DDG-51 Concept Exploration. Naval Engineers Journal, 119(3), 67-88. doi:10.1111/j.1559-3584.2007.00069.x | es_ES |
dc.description.references | Young, S., Newell, J., & Little, G. (2001). Beyond Electric Ship. Naval Engineers Journal, 113(4), 79-92. doi:10.1111/j.1559-3584.2001.tb00090.x | es_ES |
dc.description.references | Tillig F, Ringsberg J, Mao W, et al. A generic energy systems model for efficient ship design and operation. Proc IMechE, Part M: J Engineering for the Maritime Environment 2017; 231(2): 649–666. | es_ES |
dc.description.references | Ballou, P. J. (2013). Ship Energy Efficiency Management Requires a Total Solution Approach. Marine Technology Society Journal, 47(1), 83-95. doi:10.4031/mtsj.47.1.5 | es_ES |
dc.description.references | Reddy, T. A. (2011). Applied Data Analysis and Modeling for Energy Engineers and Scientists. doi:10.1007/978-1-4419-9613-8 | es_ES |
dc.description.references | Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P., & Seto, K. C. (2015). Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proceedings of the National Academy of Sciences, 112(20), 6283-6288. doi:10.1073/pnas.1315545112 | es_ES |
dc.description.references | Mueller, L., Jakobi, G., Czech, H., Stengel, B., Orasche, J., Arteaga-Salas, J. M., … Zimmermann, R. (2015). Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Applied Energy, 155, 204-217. doi:10.1016/j.apenergy.2015.05.115 | es_ES |
dc.description.references | Perera, L. P., & Mo, B. (2016). Data analysis on marine engine operating regions in relation to ship navigation. Ocean Engineering, 128, 163-172. doi:10.1016/j.oceaneng.2016.10.029 | es_ES |
dc.description.references | Bialystocki, N., & Konovessis, D. (2016). On the estimation of ship’s fuel consumption and speed curve: A statistical approach. Journal of Ocean Engineering and Science, 1(2), 157-166. doi:10.1016/j.joes.2016.02.001 | es_ES |
dc.description.references | Lepore, A., dos Reis, M. S., Palumbo, B., Rendall, R., & Capezza, C. (2017). A comparison of advanced regression techniques for predicting ship CO2emissions. Quality and Reliability Engineering International, 33(6), 1281-1292. doi:10.1002/qre.2171 | es_ES |
dc.description.references | Brefort, D., Shields, C., Habben Jansen, A., Duchateau, E., Pawling, R., Droste, K., … Kana, A. A. (2018). An architectural framework for distributed naval ship systems. Ocean Engineering, 147, 375-385. doi:10.1016/j.oceaneng.2017.10.028 | es_ES |
dc.description.references | Hernández CR, Fernández R, Arce ME, et al. Análisis del ciclo de vida en Fragatas de la serie F-100. In: Serna J, et al. (eds) Actas: IV Congreso Nacional de i+d en Defensa y Seguridad, DESEi+d, 2016. Spain: Centro Universitario de la Defensa de San Javier. | es_ES |
dc.description.references | Orosa, J. A., Costa, Á. M., & Pérez, J. A. (2017). A new modelling procedure of the engine room ventilation system for work risk prevention and energy saving. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 231(4), 863-870. doi:10.1177/1475090216687148 | es_ES |
dc.description.references | Akin, J. E. (2010). Finite Element Analysis Concepts. doi:10.1142/7785 | es_ES |
dc.description.references | Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003 | es_ES |
dc.description.references | De Marchis, M., Freni, G., & Napoli, E. (2014). Three-dimensional numerical simulations on wind- and tide-induced currents: The case of Augusta Harbour (Italy). Computers & Geosciences, 72, 65-75. doi:10.1016/j.cageo.2014.07.003 | es_ES |
dc.description.references | Celik, I., & Karatekin, O. (1997). Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids. Journal of Fluids Engineering, 119(3), 584-590. doi:10.1115/1.2819284 | es_ES |
dc.description.references | IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. (1911). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 210(459-470), 307-357. doi:10.1098/rsta.1911.0009 | es_ES |
dc.description.references | Roache, P. J., Ghia, K. N., & White, F. M. (1986). Editorial Policy Statement on the Control of Numerical Accuracy. Journal of Fluids Engineering, 108(1), 2. doi:10.1115/1.3242537 | es_ES |
dc.description.references | Xie, M., & Zhang, W. (2010). Numerical Study on the Three-Dimensional Characteristics of the Tidal Current Around Harbor Entrance. Journal of Hydrodynamics, 22(6), 847-855. doi:10.1016/s1001-6058(09)60125-6 | es_ES |