- -

Analysis of key variables for energy efficiency in warships

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of key variables for energy efficiency in warships

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carrasco, Pedro es_ES
dc.contributor.author Bendaña, Ricardo es_ES
dc.contributor.author Paredes, Angel es_ES
dc.contributor.author Michinel, Humberto es_ES
dc.contributor.author Fernández de Córdoba, Pedro es_ES
dc.contributor.author Arce, M. Elena es_ES
dc.contributor.author Zaragoza, Sonia es_ES
dc.date.accessioned 2021-02-24T04:32:05Z
dc.date.available 2021-02-24T04:32:05Z
dc.date.issued 2020-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162254
dc.description.abstract [EN] The purpose of this work is to investigate the effect of environmental variables on the electric energy expenditure of a typical surface warship. Studies with similar objectives are much more frequent for merchant ships, but warship operations have peculiarities that will be emphasized. In particular, they spend large fractions of their life cycle at port, during which the vessel remains active. Firstly, a discussion of the embarked systems is presented, pointing out the importance of auxiliary systems and in particular, heating, ventilation and air conditioning. Quantitative estimates of the energy consumption of those systems are provided. Then, using data taken during real operations of a frigate of the Spanish navy, correlations are computed between power consumption and different environmental variables. As a novelty, the analysis is carried out separating the different modes of operation of the ship. This leads to interesting conclusions, including a considerable positive correlation between sea water temperature and consumption when the vessel is at port. The effect of a moored ship on the surrounding sea water temperature is studied by a numerical computation. The results suggest that the position of sea chests may be consequential for energy efficiency. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by Xunta de Galicia (Grant Number ED431B 2018/57) and by Ministerio de Economia y Competitividad (Grant Numbers FIS2017-83762-P, FPDI-2013-17516, ENE 2013-48015-C3-1-R and RTI2018-102256-B-I00-AR). es_ES
dc.language Inglés es_ES
dc.publisher Sage es_ES
dc.relation.ispartof Journal of Engineering for the Maritime Environment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Warships es_ES
dc.subject Energy efficiency es_ES
dc.subject Statistical correlations es_ES
dc.subject Heating es_ES
dc.subject Ventilation and air conditioning es_ES
dc.subject Numerical simulation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Analysis of key variables for energy efficiency in warships es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1475090219864816 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83762-P/ES/SIMULACION OPTICA DE MATERIA OSCURA Y OTROS SISTEMAS DE FISICA FUNDAMENTAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F57/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FPDI-2013-17516/ES/FPDI-2013-17516/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2013-48015-C3-1-R/ES/SISTEMA INTEGRADO PARA LA OPTIMIZACION ENERGETICA Y REDUCCION DE LA HUELLA DE CO2 EN EDIFICIOS: TECNOLOGIAS BIM, INDOOR MAPPING, UAV Y HERRAMIENTAS DE SIMULACION ENERGETICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Carrasco, P.; Bendaña, R.; Paredes, A.; Michinel, H.; Fernández De Córdoba, P.; Arce, ME.; Zaragoza, S. (2020). Analysis of key variables for energy efficiency in warships. Journal of Engineering for the Maritime Environment. 234(1):26-36. https://doi.org/10.1177/1475090219864816 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1475090219864816 es_ES
dc.description.upvformatpinicio 26 es_ES
dc.description.upvformatpfin 36 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 234 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1475-0902 es_ES
dc.relation.pasarela S\389943 es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Agarwal, S., Kahlon, N., Agarwal, P., & Dixit, S. (2017). Relationship between Student’s Family Socio-economic Status, Gap Year/years after Schooling and Self-concept: A Cross-Sectional Study among Medical Students. International Journal of Physiology, 5(1), 21. doi:10.5958/2320-608x.2017.00005.1 es_ES
dc.description.references Jafarzadeh, S., & Utne, I. B. (2014). A framework to bridge the energy efficiency gap in shipping. Energy, 69, 603-612. doi:10.1016/j.energy.2014.03.056 es_ES
dc.description.references Papanikolaou, A., Zaraphonitis, G., Bitner-Gregersen, E., Shigunov, V., Moctar, O. E., Soares, C. G., … Sprenger, F. (2016). Energy Efficient Safe SHip Operation (SHOPERA). Transportation Research Procedia, 14, 820-829. doi:10.1016/j.trpro.2016.05.030 es_ES
dc.description.references Elena Arce, M., Saavedra, Á., Míguez, J. L., & Granada, E. (2015). The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review. Renewable and Sustainable Energy Reviews, 47, 924-932. doi:10.1016/j.rser.2015.03.010 es_ES
dc.description.references Patterson, M. G. (1996). What is energy efficiency? Energy Policy, 24(5), 377-390. doi:10.1016/0301-4215(96)00017-1 es_ES
dc.description.references Figari, M., D’Amico, M., & Gaggero, P. (2011). Evaluation of ship efficiency indexes. Sustainable Maritime Transportation and Exploitation of Sea Resources, 621-627. doi:10.1201/b11810-94 es_ES
dc.description.references Tran, T. A. (2017). A research on the energy efficiency operational indicator EEOI calculation tool on M/V NSU JUSTICE of VINIC transportation company, Vietnam. Journal of Ocean Engineering and Science, 2(1), 55-60. doi:10.1016/j.joes.2017.01.001 es_ES
dc.description.references Coraddu, A., Figari, M., & Savio, S. (2014). Numerical investigation on ship energy efficiency by Monte Carlo simulation. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 228(3), 220-234. doi:10.1177/1475090214524184 es_ES
dc.description.references STEPANCHICK, J., & BROWN, A. (2007). Revisiting DDGX/DDG-51 Concept Exploration. Naval Engineers Journal, 119(3), 67-88. doi:10.1111/j.1559-3584.2007.00069.x es_ES
dc.description.references Young, S., Newell, J., & Little, G. (2001). Beyond Electric Ship. Naval Engineers Journal, 113(4), 79-92. doi:10.1111/j.1559-3584.2001.tb00090.x es_ES
dc.description.references Tillig F, Ringsberg J, Mao W, et al. A generic energy systems model for efficient ship design and operation. Proc IMechE, Part M: J Engineering for the Maritime Environment 2017; 231(2): 649–666. es_ES
dc.description.references Ballou, P. J. (2013). Ship Energy Efficiency Management Requires a Total Solution Approach. Marine Technology Society Journal, 47(1), 83-95. doi:10.4031/mtsj.47.1.5 es_ES
dc.description.references Reddy, T. A. (2011). Applied Data Analysis and Modeling for Energy Engineers and Scientists. doi:10.1007/978-1-4419-9613-8 es_ES
dc.description.references Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P., & Seto, K. C. (2015). Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proceedings of the National Academy of Sciences, 112(20), 6283-6288. doi:10.1073/pnas.1315545112 es_ES
dc.description.references Mueller, L., Jakobi, G., Czech, H., Stengel, B., Orasche, J., Arteaga-Salas, J. M., … Zimmermann, R. (2015). Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Applied Energy, 155, 204-217. doi:10.1016/j.apenergy.2015.05.115 es_ES
dc.description.references Perera, L. P., & Mo, B. (2016). Data analysis on marine engine operating regions in relation to ship navigation. Ocean Engineering, 128, 163-172. doi:10.1016/j.oceaneng.2016.10.029 es_ES
dc.description.references Bialystocki, N., & Konovessis, D. (2016). On the estimation of ship’s fuel consumption and speed curve: A statistical approach. Journal of Ocean Engineering and Science, 1(2), 157-166. doi:10.1016/j.joes.2016.02.001 es_ES
dc.description.references Lepore, A., dos Reis, M. S., Palumbo, B., Rendall, R., & Capezza, C. (2017). A comparison of advanced regression techniques for predicting ship CO2emissions. Quality and Reliability Engineering International, 33(6), 1281-1292. doi:10.1002/qre.2171 es_ES
dc.description.references Brefort, D., Shields, C., Habben Jansen, A., Duchateau, E., Pawling, R., Droste, K., … Kana, A. A. (2018). An architectural framework for distributed naval ship systems. Ocean Engineering, 147, 375-385. doi:10.1016/j.oceaneng.2017.10.028 es_ES
dc.description.references Hernández CR, Fernández R, Arce ME, et al. Análisis del ciclo de vida en Fragatas de la serie F-100. In: Serna J, et al. (eds) Actas: IV Congreso Nacional de i+d en Defensa y Seguridad, DESEi+d, 2016. Spain: Centro Universitario de la Defensa de San Javier. es_ES
dc.description.references Orosa, J. A., Costa, Á. M., & Pérez, J. A. (2017). A new modelling procedure of the engine room ventilation system for work risk prevention and energy saving. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 231(4), 863-870. doi:10.1177/1475090216687148 es_ES
dc.description.references Akin, J. E. (2010). Finite Element Analysis Concepts. doi:10.1142/7785 es_ES
dc.description.references Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003 es_ES
dc.description.references De Marchis, M., Freni, G., & Napoli, E. (2014). Three-dimensional numerical simulations on wind- and tide-induced currents: The case of Augusta Harbour (Italy). Computers & Geosciences, 72, 65-75. doi:10.1016/j.cageo.2014.07.003 es_ES
dc.description.references Celik, I., & Karatekin, O. (1997). Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids. Journal of Fluids Engineering, 119(3), 584-590. doi:10.1115/1.2819284 es_ES
dc.description.references IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. (1911). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 210(459-470), 307-357. doi:10.1098/rsta.1911.0009 es_ES
dc.description.references Roache, P. J., Ghia, K. N., & White, F. M. (1986). Editorial Policy Statement on the Control of Numerical Accuracy. Journal of Fluids Engineering, 108(1), 2. doi:10.1115/1.3242537 es_ES
dc.description.references Xie, M., & Zhang, W. (2010). Numerical Study on the Three-Dimensional Characteristics of the Tidal Current Around Harbor Entrance. Journal of Hydrodynamics, 22(6), 847-855. doi:10.1016/s1001-6058(09)60125-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem