- -

Analysis of key variables for energy efficiency in warships

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of key variables for energy efficiency in warships

Mostrar el registro completo del ítem

Carrasco, P.; Bendaña, R.; Paredes, A.; Michinel, H.; Fernández De Córdoba, P.; Arce, ME.; Zaragoza, S. (2020). Analysis of key variables for energy efficiency in warships. Journal of Engineering for the Maritime Environment. 234(1):26-36. https://doi.org/10.1177/1475090219864816

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162254

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of key variables for energy efficiency in warships
Autor: Carrasco, Pedro Bendaña, Ricardo Paredes, Angel Michinel, Humberto Fernández de Córdoba, Pedro Arce, M. Elena Zaragoza, Sonia
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] The purpose of this work is to investigate the effect of environmental variables on the electric energy expenditure of a typical surface warship. Studies with similar objectives are much more frequent for merchant ...[+]
Palabras clave: Warships , Energy efficiency , Statistical correlations , Heating , Ventilation and air conditioning , Numerical simulation
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Engineering for the Maritime Environment. (eissn: 1475-0902 )
DOI: 10.1177/1475090219864816
Editorial:
Sage
Versión del editor: https://doi.org/10.1177/1475090219864816
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83762-P/ES/SIMULACION OPTICA DE MATERIA OSCURA Y OTROS SISTEMAS DE FISICA FUNDAMENTAL/
info:eu-repo/grantAgreement/Xunta de Galicia//ED431B 2018%2F57/
info:eu-repo/grantAgreement/MINECO//FPDI-2013-17516/ES/FPDI-2013-17516/
info:eu-repo/grantAgreement/MINECO//ENE2013-48015-C3-1-R/ES/SISTEMA INTEGRADO PARA LA OPTIMIZACION ENERGETICA Y REDUCCION DE LA HUELLA DE CO2 EN EDIFICIOS: TECNOLOGIAS BIM, INDOOR MAPPING, UAV Y HERRAMIENTAS DE SIMULACION ENERGETICA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102256-B-I00/ES/TRANSFERENCIA DE CALOR EN FLUJOS DE PARED: CANALES Y CAPAS LIMITES/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by Xunta de Galicia (Grant Number ED431B 2018/57) and by Ministerio ...[+]
Tipo: Artículo

References

Agarwal, S., Kahlon, N., Agarwal, P., & Dixit, S. (2017). Relationship between Student’s Family Socio-economic Status, Gap Year/years after Schooling and Self-concept: A Cross-Sectional Study among Medical Students. International Journal of Physiology, 5(1), 21. doi:10.5958/2320-608x.2017.00005.1

Jafarzadeh, S., & Utne, I. B. (2014). A framework to bridge the energy efficiency gap in shipping. Energy, 69, 603-612. doi:10.1016/j.energy.2014.03.056

Papanikolaou, A., Zaraphonitis, G., Bitner-Gregersen, E., Shigunov, V., Moctar, O. E., Soares, C. G., … Sprenger, F. (2016). Energy Efficient Safe SHip Operation (SHOPERA). Transportation Research Procedia, 14, 820-829. doi:10.1016/j.trpro.2016.05.030 [+]
Agarwal, S., Kahlon, N., Agarwal, P., & Dixit, S. (2017). Relationship between Student’s Family Socio-economic Status, Gap Year/years after Schooling and Self-concept: A Cross-Sectional Study among Medical Students. International Journal of Physiology, 5(1), 21. doi:10.5958/2320-608x.2017.00005.1

Jafarzadeh, S., & Utne, I. B. (2014). A framework to bridge the energy efficiency gap in shipping. Energy, 69, 603-612. doi:10.1016/j.energy.2014.03.056

Papanikolaou, A., Zaraphonitis, G., Bitner-Gregersen, E., Shigunov, V., Moctar, O. E., Soares, C. G., … Sprenger, F. (2016). Energy Efficient Safe SHip Operation (SHOPERA). Transportation Research Procedia, 14, 820-829. doi:10.1016/j.trpro.2016.05.030

Elena Arce, M., Saavedra, Á., Míguez, J. L., & Granada, E. (2015). The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review. Renewable and Sustainable Energy Reviews, 47, 924-932. doi:10.1016/j.rser.2015.03.010

Patterson, M. G. (1996). What is energy efficiency? Energy Policy, 24(5), 377-390. doi:10.1016/0301-4215(96)00017-1

Figari, M., D’Amico, M., & Gaggero, P. (2011). Evaluation of ship efficiency indexes. Sustainable Maritime Transportation and Exploitation of Sea Resources, 621-627. doi:10.1201/b11810-94

Tran, T. A. (2017). A research on the energy efficiency operational indicator EEOI calculation tool on M/V NSU JUSTICE of VINIC transportation company, Vietnam. Journal of Ocean Engineering and Science, 2(1), 55-60. doi:10.1016/j.joes.2017.01.001

Coraddu, A., Figari, M., & Savio, S. (2014). Numerical investigation on ship energy efficiency by Monte Carlo simulation. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 228(3), 220-234. doi:10.1177/1475090214524184

STEPANCHICK, J., & BROWN, A. (2007). Revisiting DDGX/DDG-51 Concept Exploration. Naval Engineers Journal, 119(3), 67-88. doi:10.1111/j.1559-3584.2007.00069.x

Young, S., Newell, J., & Little, G. (2001). Beyond Electric Ship. Naval Engineers Journal, 113(4), 79-92. doi:10.1111/j.1559-3584.2001.tb00090.x

Tillig F, Ringsberg J, Mao W, et al. A generic energy systems model for efficient ship design and operation. Proc IMechE, Part M: J Engineering for the Maritime Environment 2017; 231(2): 649–666.

Ballou, P. J. (2013). Ship Energy Efficiency Management Requires a Total Solution Approach. Marine Technology Society Journal, 47(1), 83-95. doi:10.4031/mtsj.47.1.5

Reddy, T. A. (2011). Applied Data Analysis and Modeling for Energy Engineers and Scientists. doi:10.1007/978-1-4419-9613-8

Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P., & Seto, K. C. (2015). Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proceedings of the National Academy of Sciences, 112(20), 6283-6288. doi:10.1073/pnas.1315545112

Mueller, L., Jakobi, G., Czech, H., Stengel, B., Orasche, J., Arteaga-Salas, J. M., … Zimmermann, R. (2015). Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Applied Energy, 155, 204-217. doi:10.1016/j.apenergy.2015.05.115

Perera, L. P., & Mo, B. (2016). Data analysis on marine engine operating regions in relation to ship navigation. Ocean Engineering, 128, 163-172. doi:10.1016/j.oceaneng.2016.10.029

Bialystocki, N., & Konovessis, D. (2016). On the estimation of ship’s fuel consumption and speed curve: A statistical approach. Journal of Ocean Engineering and Science, 1(2), 157-166. doi:10.1016/j.joes.2016.02.001

Lepore, A., dos Reis, M. S., Palumbo, B., Rendall, R., & Capezza, C. (2017). A comparison of advanced regression techniques for predicting ship CO2emissions. Quality and Reliability Engineering International, 33(6), 1281-1292. doi:10.1002/qre.2171

Brefort, D., Shields, C., Habben Jansen, A., Duchateau, E., Pawling, R., Droste, K., … Kana, A. A. (2018). An architectural framework for distributed naval ship systems. Ocean Engineering, 147, 375-385. doi:10.1016/j.oceaneng.2017.10.028

Hernández CR, Fernández R, Arce ME, et al. Análisis del ciclo de vida en Fragatas de la serie F-100. In: Serna J, et al. (eds) Actas: IV Congreso Nacional de i+d en Defensa y Seguridad, DESEi+d, 2016. Spain: Centro Universitario de la Defensa de San Javier.

Orosa, J. A., Costa, Á. M., & Pérez, J. A. (2017). A new modelling procedure of the engine room ventilation system for work risk prevention and energy saving. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 231(4), 863-870. doi:10.1177/1475090216687148

Akin, J. E. (2010). Finite Element Analysis Concepts. doi:10.1142/7785

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. doi:10.1137/1.9780898718003

De Marchis, M., Freni, G., & Napoli, E. (2014). Three-dimensional numerical simulations on wind- and tide-induced currents: The case of Augusta Harbour (Italy). Computers & Geosciences, 72, 65-75. doi:10.1016/j.cageo.2014.07.003

Celik, I., & Karatekin, O. (1997). Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids. Journal of Fluids Engineering, 119(3), 584-590. doi:10.1115/1.2819284

IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. (1911). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 210(459-470), 307-357. doi:10.1098/rsta.1911.0009

Roache, P. J., Ghia, K. N., & White, F. M. (1986). Editorial Policy Statement on the Control of Numerical Accuracy. Journal of Fluids Engineering, 108(1), 2. doi:10.1115/1.3242537

Xie, M., & Zhang, W. (2010). Numerical Study on the Three-Dimensional Characteristics of the Tidal Current Around Harbor Entrance. Journal of Hydrodynamics, 22(6), 847-855. doi:10.1016/s1001-6058(09)60125-6

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem