- -

Radio Frequency and DC High Voltage Breakdown of High Pressure Helium, Argon, and Xenon

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Radio Frequency and DC High Voltage Breakdown of High Pressure Helium, Argon, and Xenon

Show full item record

Woodruff, K.; Baeza-Rubio, J.; Huerta, D.; Jones, BJP.; Mcdonald, AD.; Norman, L.; Nygren, DR.... (2020). Radio Frequency and DC High Voltage Breakdown of High Pressure Helium, Argon, and Xenon. Journal of Instrumentation. 15(4):1-15. https://doi.org/10.1088/1748-0221/15/04/P04022

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162257

Files in this item

Item Metadata

Title: Radio Frequency and DC High Voltage Breakdown of High Pressure Helium, Argon, and Xenon
Author: Woodruff, K. Baeza-Rubio, J. Huerta, D. Jones, B. J. P. McDonald, A. D. Norman, L. Nygren, D. R. Adams, C. Álvarez-Puerta, Vicente Arazi, L. Arnquist, I. J. Azevedo, C. D. R. Bailey, K. Ballester Merelo, Francisco José Benlloch-Rodriguez, J. M. Esteve Bosch, Raul Herrero Bosch, Vicente Mora Mas, Francisco José Rodriguez-Samaniego, Javier Toledo Alarcón, José Francisco
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Issued date:
Abstract:
[EN] Motivated by the possibility of guiding daughter ions from double beta decay events to single-ion sensors for barium tagging, the NEXT collaboration is developing a program of R&D to test radio frequency (RF) carpets ...[+]
Subjects: Gaseous detectors , Gaseous imaging and tracking detectors
Copyrigths: Reserva de todos los derechos
Source:
Journal of Instrumentation. (issn: 1748-0221 )
DOI: 10.1088/1748-0221/15/04/P04022
Publisher:
IOP Publishing
Publisher version: https://doi.org/10.1088/1748-0221/15/04/P04022
Project ID:
info:eu-repo/grantAgreement/MINECO//FIS2012-37947-C04-01/ES/CONSTRUCCION DEL EXPERIMENTO NEXT EN EL LSC DE CANFRANC/
info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C44/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/
Type: Artículo

References

Dehmelt, H. G., & Major, F. G. (1962). Orientation of(He4)+Ions by Exchange Collisions with Cesium Atoms. Physical Review Letters, 8(5), 213-214. doi:10.1103/physrevlett.8.213

Wada, M., Ishida, Y., Nakamura, T., Yamazaki, Y., Kambara, T., Ohyama, H., … Katayama, I. (2003). Slow RI-beams from projectile fragment separators. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 204, 570-581. doi:10.1016/s0168-583x(02)02151-1

Gehring, A. E., Brodeur, M., Bollen, G., Morrissey, D. J., & Schwarz, S. (2016). Research and development of ion surfing RF carpets for the cyclotron gas stopper at the NSCL. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 376, 221-224. doi:10.1016/j.nimb.2016.02.012 [+]
Dehmelt, H. G., & Major, F. G. (1962). Orientation of(He4)+Ions by Exchange Collisions with Cesium Atoms. Physical Review Letters, 8(5), 213-214. doi:10.1103/physrevlett.8.213

Wada, M., Ishida, Y., Nakamura, T., Yamazaki, Y., Kambara, T., Ohyama, H., … Katayama, I. (2003). Slow RI-beams from projectile fragment separators. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 204, 570-581. doi:10.1016/s0168-583x(02)02151-1

Gehring, A. E., Brodeur, M., Bollen, G., Morrissey, D. J., & Schwarz, S. (2016). Research and development of ion surfing RF carpets for the cyclotron gas stopper at the NSCL. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 376, 221-224. doi:10.1016/j.nimb.2016.02.012

Ranjan, M., Purushothaman, S., Dickel, T., Geissel, H., Plass, W. R., Schäfer, D., … Dendooven, P. (2011). New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation. EPL (Europhysics Letters), 96(5), 52001. doi:10.1209/0295-5075/96/52001

Arai, F., Ito, Y., Katayama, I., Schury, P., Sonoda, T., Wada, M., & Wollnik, H. (2015). Performance of Ion Surfing Rf-carpets for High-Energy RI Beam Gas Catcher. Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014). doi:10.7566/jpscp.6.030110

Schwarz, S. (2011). RF ion carpets: The electric field, the effective potential, operational parameters and an analysis of stability. International Journal of Mass Spectrometry, 299(2-3), 71-77. doi:10.1016/j.ijms.2010.09.021

Paschen, F. (1889). Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik, 273(5), 69-96. doi:10.1002/andp.18892730505

Jones, F. L., & Morgan, G. D. (1951). High-Frequency Discharges: I Breakdown Mechanism and Similarity Relationship. Proceedings of the Physical Society. Section B, 64(7), 560-573. doi:10.1088/0370-1301/64/7/303

Townsend, W. G., & Williams, G. C. (1958). The Electrical Breakdown of Gases in Uniform High Frequency Fields at Low Pressure. Proceedings of the Physical Society, 72(5), 823-832. doi:10.1088/0370-1328/72/5/318

Sato, M., & Shoji, M. (1997). Breakdown Characteristics of RF Argon Capacitive Discharge. Japanese Journal of Applied Physics, 36(Part 1, No. 9A), 5729-5730. doi:10.1143/jjap.36.5729

Lisovskiy, V. A., & Yegorenkov, V. D. (1998). Rf breakdown of low-pressure gas and a novel method for determination of electron-drift velocities in gases. Journal of Physics D: Applied Physics, 31(23), 3349-3357. doi:10.1088/0022-3727/31/23/008

Fukugita, M., & Yanagida, T. (1986). Barygenesis without grand unification. Physics Letters B, 174(1), 45-47. doi:10.1016/0370-2693(86)91126-3

Moe, M. K. (1991). Detection of neutrinoless double-beta decay. Physical Review C, 44(3), R931-R934. doi:10.1103/physrevc.44.r931

Sinclair, D., Rollin, E., Smith, J., Mommers, A., Ackeran, N., Aharmin, B., … Breidenbach, M. (2011). Prospects for Barium Tagging in Gaseous Xenon. Journal of Physics: Conference Series, 309, 012005. doi:10.1088/1742-6596/309/1/012005

Brunner, T., Fudenberg, D., Sabourov, A., Varentsov, V. L., Gratta, G., & Sinclair, D. (2013). A setup for Ba-ion extraction from high pressure Xe gas for double-beta decay studies with EXO. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317, 473-475. doi:10.1016/j.nimb.2013.05.086

Twelker, K., Kravitz, S., Díez, M. M., Gratta, G., Fairbank, W., Albert, J. B., … Benitez-Medina, C. (2014). An apparatus to manipulate and identify individual Ba ions from bulk liquid Xe. Review of Scientific Instruments, 85(9), 095114. doi:10.1063/1.4895646

Mong, B., Cook, S., Walton, T., Chambers, C., Craycraft, A., Benitez-Medina, C., … Auty, D. J. (2015). Spectroscopy of Ba andBa+deposits in solid xenon for barium tagging in nEXO. Physical Review A, 91(2). doi:10.1103/physreva.91.022505

Brunner, T., Fudenberg, D., Varentsov, V., Sabourov, A., Gratta, G., Dilling, J., … Albert, J. B. (2015). An RF-only ion-funnel for extraction from high-pressure gases. International Journal of Mass Spectrometry, 379, 110-120. doi:10.1016/j.ijms.2015.01.003

Nygren, D. R. (2016). Detection of the barium daughter in 136Xe →136Ba+2e− by in situ single-molecule fluorescence imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 824, 2-5. doi:10.1016/j.nima.2015.11.038

Jones, B. J. P., McDonald, A. D., & Nygren, D. R. (2016). Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay. Journal of Instrumentation, 11(12), P12011-P12011. doi:10.1088/1748-0221/11/12/p12011

Byrnes, N., Foss, F. W., Jones, B. J. ., McDonald, A. D., Nygren, D. R., … Thapa, P. (2019). Progress toward Barium Tagging in High Pressure Xenon Gas with Single Molecule Fluorescence Imaging. Journal of Physics: Conference Series, 1312, 012001. doi:10.1088/1742-6596/1312/1/012001

McDonald, A. D., Jones, B. J. P., Nygren, D. R., Adams, C., Álvarez, V., Azevedo, C. D. R., … Cárcel, S. (2018). Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. Physical Review Letters, 120(13). doi:10.1103/physrevlett.120.132504

(2019). Imaging individual barium atoms in solid xenon for barium tagging in nEXO. Nature, 569(7755), 203-207. doi:10.1038/s41586-019-1169-4

Thapa, P., Arnquist, I., Byrnes, N., Denisenko, A. A., Foss, F. W., Jones, B. J. P., … Woodruff, K. (2019). Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay. Scientific Reports, 9(1). doi:10.1038/s41598-019-49283-x

Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159

Bainglass, E., Jones, B. J. P., Foss, F. W., Huda, M. N., & Nygren, D. R. (2018). Mobility and clustering of barium ions and dications in high-pressure xenon gas. Physical Review A, 97(6). doi:10.1103/physreva.97.062509

Postel, O. B., & Cappelli, M. A. (2000). Vacuum emission and breakdown characteristics of a planar He–Xe microdischarge. Applied Physics Letters, 76(5), 544-546. doi:10.1063/1.125813

Sosov, Y., & Theodosiou, C. E. (2004). Determination of electric field-dependent effective secondary emission coefficients for He/Xe ions on brass. Journal of Applied Physics, 95(8), 4385-4388. doi:10.1063/1.1655677

Lieberman, M. A., & Lichtenberg, A. J. (2005). Principles of Plasma Discharges and Materials Processing. doi:10.1002/0471724254

Lisovskiy, V. A., Yakovin, S. D., & Yegorenkov, V. D. (2000). Low-pressure gas breakdown in uniform dc electric field. Journal of Physics D: Applied Physics, 33(21), 2722-2730. doi:10.1088/0022-3727/33/21/310

Smith, H. B., Charles, C., & Boswell, R. W. (2003). Breakdown behavior in radio-frequency argon discharges. Physics of Plasmas, 10(3), 875-881. doi:10.1063/1.1531615

Bhattacharya, A. K. (1976). Measurement of breakdown potentials and Townsend ionization coefficients for the Penning mixtures of neon and xenon. Physical Review A, 13(3), 1219-1225. doi:10.1103/physreva.13.1219

Jacques, L., Bruynooghe, W., Boucique, R., & Wieme, W. (1986). Experimental determination of the primary and secondary ionisation coefficients in krypton and xenon. Journal of Physics D: Applied Physics, 19(9), 1731-1739. doi:10.1088/0022-3727/19/9/017

Bradford, H. M., Fraser, D. M., Langstroth, G. F. O., & MacDonald, A. D. (1959). ELECTRICAL BREAKDOWN IN XENON AND KRYPTON AT ULTRAHIGH FREQUENCIES. Canadian Journal of Physics, 37(10), 1166-1170. doi:10.1139/p59-133

Park, J., Henins, I., Herrmann, H. W., & Selwyn, G. S. (2001). Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source. Journal of Applied Physics, 89(1), 15-19. doi:10.1063/1.1323754

Moravej, M., Yang, X., Nowling, G. R., Chang, J. P., Hicks, R. F., & Babayan, S. E. (2004). Physics of high-pressure helium and argon radio-frequency plasmas. Journal of Applied Physics, 96(12), 7011-7017. doi:10.1063/1.1815047

Borg Dezani, V., & Ginoux, J. L. (1994). Investigation of breakdown voltage curves for pure helium and silane–helium mixtures. Physics of Plasmas, 1(4), 1060-1063. doi:10.1063/1.870786

McDonald, A. D., Woodruff, K., Atoum, B. A., González-Díaz, D., Jones, B. J. P., Adams, C., … Azevedo, C. D. . (2019). Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures. Journal of Instrumentation, 14(08), P08009-P08009. doi:10.1088/1748-0221/14/08/p08009

Rogers, L., Clark, R. A., Jones, B. J. P., McDonald, A. D., Nygren, D. R., Psihas, F., … Azevedo, C. D. . (2018). High voltage insulation and gas absorption of polymers in high pressure argon and xenon gases. Journal of Instrumentation, 13(10), P10002-P10002. doi:10.1088/1748-0221/13/10/p10002

Okawa, M., Shioiri, T., Okubo, H., & Yanabu, S. (1988). Area effect on electric breakdown of copper and stainless steel electrodes in vacuum. IEEE Transactions on Electrical Insulation, 23(1), 77-81. doi:10.1109/14.2336

Kihara, T. (1952). The Mathematical Theory of Electrical Discharges in Gases. Reviews of Modern Physics, 24(1), 45-61. doi:10.1103/revmodphys.24.45

Hamaker, A., Brodeur, M., Kelly, J. M., Long, J., Nicoloff, C., Ryan, S., … Wada, M. (2016). Experimental investigation of the repelling force from RF carpets. International Journal of Mass Spectrometry, 404, 14-19. doi:10.1016/j.ijms.2016.04.004

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record