- -

Radio Frequency and DC High Voltage Breakdown of High Pressure Helium, Argon, and Xenon

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Radio Frequency and DC High Voltage Breakdown of High Pressure Helium, Argon, and Xenon

Show simple item record

Files in this item

dc.contributor.author Woodruff, K. es_ES
dc.contributor.author Baeza-Rubio, J. es_ES
dc.contributor.author Huerta, D. es_ES
dc.contributor.author Jones, B. J. P. es_ES
dc.contributor.author McDonald, A. D. es_ES
dc.contributor.author Norman, L. es_ES
dc.contributor.author Nygren, D. R. es_ES
dc.contributor.author Adams, C. es_ES
dc.contributor.author Álvarez-Puerta, Vicente es_ES
dc.contributor.author Arazi, L. es_ES
dc.contributor.author Arnquist, I. J. es_ES
dc.contributor.author Azevedo, C. D. R. es_ES
dc.contributor.author Bailey, K. es_ES
dc.contributor.author Ballester Merelo, Francisco José es_ES
dc.contributor.author Benlloch-Rodriguez, J. M. es_ES
dc.contributor.author Esteve Bosch, Raul es_ES
dc.contributor.author Herrero Bosch, Vicente es_ES
dc.contributor.author Mora Mas, Francisco José es_ES
dc.contributor.author Rodriguez-Samaniego, Javier es_ES
dc.contributor.author Toledo Alarcón, José Francisco es_ES
dc.date.accessioned 2021-02-24T04:32:11Z
dc.date.available 2021-02-24T04:32:11Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 1748-0221 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162257
dc.description.abstract [EN] Motivated by the possibility of guiding daughter ions from double beta decay events to single-ion sensors for barium tagging, the NEXT collaboration is developing a program of R&D to test radio frequency (RF) carpets for ion transport in high pressure xenon gas. This would require carpet functionality in regimes at higher pressures than have been previously reported, implying correspondingly larger electrode voltages than in existing systems. This mode of operation appears plausible for contemporary RF-carpet geometries due to the higher predicted breakdown strength of high pressure xenon relative to low pressure helium, the working medium in most existing RF carpet devices. In this paper we present the first measurements of the high voltage dielectric strength of xenon gas at high pressure and at the relevant RF frequencies for ion transport (in the 10MHz range), as well as new DC and RF measurements of the dielectric strengths of high pressure argon and helium gases at small gap sizes. We find breakdown voltages that are compatible with stable RF carpet operation given the gas, pressure, voltage, materials and geometry of interest. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Journal of Instrumentation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gaseous detectors es_ES
dc.subject Gaseous imaging and tracking detectors es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Radio Frequency and DC High Voltage Breakdown of High Pressure Helium, Argon, and Xenon es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1748-0221/15/04/P04022 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2012-37947-C04-01/ES/CONSTRUCCION DEL EXPERIMENTO NEXT EN EL LSC DE CANFRANC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FIS2014-53371-C4-4-R/ES/CONSTRUCCION, VALIDACION Y OPERACION DE LA ELECTRONICA DEL EXPERIMENTO NEXT/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095979-B-C44/ES/CONSTRUCCION Y OPERACION DEL DETECTOR NEXT-100/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Woodruff, K.; Baeza-Rubio, J.; Huerta, D.; Jones, BJP.; Mcdonald, AD.; Norman, L.; Nygren, DR.... (2020). Radio Frequency and DC High Voltage Breakdown of High Pressure Helium, Argon, and Xenon. Journal of Instrumentation. 15(4):1-15. https://doi.org/10.1088/1748-0221/15/04/P04022 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1748-0221/15/04/P04022 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\393149 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Dehmelt, H. G., & Major, F. G. (1962). Orientation of(He4)+Ions by Exchange Collisions with Cesium Atoms. Physical Review Letters, 8(5), 213-214. doi:10.1103/physrevlett.8.213 es_ES
dc.description.references Wada, M., Ishida, Y., Nakamura, T., Yamazaki, Y., Kambara, T., Ohyama, H., … Katayama, I. (2003). Slow RI-beams from projectile fragment separators. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 204, 570-581. doi:10.1016/s0168-583x(02)02151-1 es_ES
dc.description.references Gehring, A. E., Brodeur, M., Bollen, G., Morrissey, D. J., & Schwarz, S. (2016). Research and development of ion surfing RF carpets for the cyclotron gas stopper at the NSCL. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 376, 221-224. doi:10.1016/j.nimb.2016.02.012 es_ES
dc.description.references Ranjan, M., Purushothaman, S., Dickel, T., Geissel, H., Plass, W. R., Schäfer, D., … Dendooven, P. (2011). New stopping cell capabilities: RF carpet performance at high gas density and cryogenic operation. EPL (Europhysics Letters), 96(5), 52001. doi:10.1209/0295-5075/96/52001 es_ES
dc.description.references Arai, F., Ito, Y., Katayama, I., Schury, P., Sonoda, T., Wada, M., & Wollnik, H. (2015). Performance of Ion Surfing Rf-carpets for High-Energy RI Beam Gas Catcher. Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014). doi:10.7566/jpscp.6.030110 es_ES
dc.description.references Schwarz, S. (2011). RF ion carpets: The electric field, the effective potential, operational parameters and an analysis of stability. International Journal of Mass Spectrometry, 299(2-3), 71-77. doi:10.1016/j.ijms.2010.09.021 es_ES
dc.description.references Paschen, F. (1889). Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Annalen der Physik, 273(5), 69-96. doi:10.1002/andp.18892730505 es_ES
dc.description.references Jones, F. L., & Morgan, G. D. (1951). High-Frequency Discharges: I Breakdown Mechanism and Similarity Relationship. Proceedings of the Physical Society. Section B, 64(7), 560-573. doi:10.1088/0370-1301/64/7/303 es_ES
dc.description.references Townsend, W. G., & Williams, G. C. (1958). The Electrical Breakdown of Gases in Uniform High Frequency Fields at Low Pressure. Proceedings of the Physical Society, 72(5), 823-832. doi:10.1088/0370-1328/72/5/318 es_ES
dc.description.references Sato, M., & Shoji, M. (1997). Breakdown Characteristics of RF Argon Capacitive Discharge. Japanese Journal of Applied Physics, 36(Part 1, No. 9A), 5729-5730. doi:10.1143/jjap.36.5729 es_ES
dc.description.references Lisovskiy, V. A., & Yegorenkov, V. D. (1998). Rf breakdown of low-pressure gas and a novel method for determination of electron-drift velocities in gases. Journal of Physics D: Applied Physics, 31(23), 3349-3357. doi:10.1088/0022-3727/31/23/008 es_ES
dc.description.references Fukugita, M., & Yanagida, T. (1986). Barygenesis without grand unification. Physics Letters B, 174(1), 45-47. doi:10.1016/0370-2693(86)91126-3 es_ES
dc.description.references Moe, M. K. (1991). Detection of neutrinoless double-beta decay. Physical Review C, 44(3), R931-R934. doi:10.1103/physrevc.44.r931 es_ES
dc.description.references Sinclair, D., Rollin, E., Smith, J., Mommers, A., Ackeran, N., Aharmin, B., … Breidenbach, M. (2011). Prospects for Barium Tagging in Gaseous Xenon. Journal of Physics: Conference Series, 309, 012005. doi:10.1088/1742-6596/309/1/012005 es_ES
dc.description.references Brunner, T., Fudenberg, D., Sabourov, A., Varentsov, V. L., Gratta, G., & Sinclair, D. (2013). A setup for Ba-ion extraction from high pressure Xe gas for double-beta decay studies with EXO. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 317, 473-475. doi:10.1016/j.nimb.2013.05.086 es_ES
dc.description.references Twelker, K., Kravitz, S., Díez, M. M., Gratta, G., Fairbank, W., Albert, J. B., … Benitez-Medina, C. (2014). An apparatus to manipulate and identify individual Ba ions from bulk liquid Xe. Review of Scientific Instruments, 85(9), 095114. doi:10.1063/1.4895646 es_ES
dc.description.references Mong, B., Cook, S., Walton, T., Chambers, C., Craycraft, A., Benitez-Medina, C., … Auty, D. J. (2015). Spectroscopy of Ba andBa+deposits in solid xenon for barium tagging in nEXO. Physical Review A, 91(2). doi:10.1103/physreva.91.022505 es_ES
dc.description.references Brunner, T., Fudenberg, D., Varentsov, V., Sabourov, A., Gratta, G., Dilling, J., … Albert, J. B. (2015). An RF-only ion-funnel for extraction from high-pressure gases. International Journal of Mass Spectrometry, 379, 110-120. doi:10.1016/j.ijms.2015.01.003 es_ES
dc.description.references Nygren, D. R. (2016). Detection of the barium daughter in 136Xe →136Ba+2e− by in situ single-molecule fluorescence imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 824, 2-5. doi:10.1016/j.nima.2015.11.038 es_ES
dc.description.references Jones, B. J. P., McDonald, A. D., & Nygren, D. R. (2016). Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay. Journal of Instrumentation, 11(12), P12011-P12011. doi:10.1088/1748-0221/11/12/p12011 es_ES
dc.description.references Byrnes, N., Foss, F. W., Jones, B. J. ., McDonald, A. D., Nygren, D. R., … Thapa, P. (2019). Progress toward Barium Tagging in High Pressure Xenon Gas with Single Molecule Fluorescence Imaging. Journal of Physics: Conference Series, 1312, 012001. doi:10.1088/1742-6596/1312/1/012001 es_ES
dc.description.references McDonald, A. D., Jones, B. J. P., Nygren, D. R., Adams, C., Álvarez, V., Azevedo, C. D. R., … Cárcel, S. (2018). Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. Physical Review Letters, 120(13). doi:10.1103/physrevlett.120.132504 es_ES
dc.description.references (2019). Imaging individual barium atoms in solid xenon for barium tagging in nEXO. Nature, 569(7755), 203-207. doi:10.1038/s41586-019-1169-4 es_ES
dc.description.references Thapa, P., Arnquist, I., Byrnes, N., Denisenko, A. A., Foss, F. W., Jones, B. J. P., … Woodruff, K. (2019). Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay. Scientific Reports, 9(1). doi:10.1038/s41598-019-49283-x es_ES
dc.description.references Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159 es_ES
dc.description.references Bainglass, E., Jones, B. J. P., Foss, F. W., Huda, M. N., & Nygren, D. R. (2018). Mobility and clustering of barium ions and dications in high-pressure xenon gas. Physical Review A, 97(6). doi:10.1103/physreva.97.062509 es_ES
dc.description.references Postel, O. B., & Cappelli, M. A. (2000). Vacuum emission and breakdown characteristics of a planar He–Xe microdischarge. Applied Physics Letters, 76(5), 544-546. doi:10.1063/1.125813 es_ES
dc.description.references Sosov, Y., & Theodosiou, C. E. (2004). Determination of electric field-dependent effective secondary emission coefficients for He/Xe ions on brass. Journal of Applied Physics, 95(8), 4385-4388. doi:10.1063/1.1655677 es_ES
dc.description.references Lieberman, M. A., & Lichtenberg, A. J. (2005). Principles of Plasma Discharges and Materials Processing. doi:10.1002/0471724254 es_ES
dc.description.references Lisovskiy, V. A., Yakovin, S. D., & Yegorenkov, V. D. (2000). Low-pressure gas breakdown in uniform dc electric field. Journal of Physics D: Applied Physics, 33(21), 2722-2730. doi:10.1088/0022-3727/33/21/310 es_ES
dc.description.references Smith, H. B., Charles, C., & Boswell, R. W. (2003). Breakdown behavior in radio-frequency argon discharges. Physics of Plasmas, 10(3), 875-881. doi:10.1063/1.1531615 es_ES
dc.description.references Bhattacharya, A. K. (1976). Measurement of breakdown potentials and Townsend ionization coefficients for the Penning mixtures of neon and xenon. Physical Review A, 13(3), 1219-1225. doi:10.1103/physreva.13.1219 es_ES
dc.description.references Jacques, L., Bruynooghe, W., Boucique, R., & Wieme, W. (1986). Experimental determination of the primary and secondary ionisation coefficients in krypton and xenon. Journal of Physics D: Applied Physics, 19(9), 1731-1739. doi:10.1088/0022-3727/19/9/017 es_ES
dc.description.references Bradford, H. M., Fraser, D. M., Langstroth, G. F. O., & MacDonald, A. D. (1959). ELECTRICAL BREAKDOWN IN XENON AND KRYPTON AT ULTRAHIGH FREQUENCIES. Canadian Journal of Physics, 37(10), 1166-1170. doi:10.1139/p59-133 es_ES
dc.description.references Park, J., Henins, I., Herrmann, H. W., & Selwyn, G. S. (2001). Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source. Journal of Applied Physics, 89(1), 15-19. doi:10.1063/1.1323754 es_ES
dc.description.references Moravej, M., Yang, X., Nowling, G. R., Chang, J. P., Hicks, R. F., & Babayan, S. E. (2004). Physics of high-pressure helium and argon radio-frequency plasmas. Journal of Applied Physics, 96(12), 7011-7017. doi:10.1063/1.1815047 es_ES
dc.description.references Borg Dezani, V., & Ginoux, J. L. (1994). Investigation of breakdown voltage curves for pure helium and silane–helium mixtures. Physics of Plasmas, 1(4), 1060-1063. doi:10.1063/1.870786 es_ES
dc.description.references McDonald, A. D., Woodruff, K., Atoum, B. A., González-Díaz, D., Jones, B. J. P., Adams, C., … Azevedo, C. D. . (2019). Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures. Journal of Instrumentation, 14(08), P08009-P08009. doi:10.1088/1748-0221/14/08/p08009 es_ES
dc.description.references Rogers, L., Clark, R. A., Jones, B. J. P., McDonald, A. D., Nygren, D. R., Psihas, F., … Azevedo, C. D. . (2018). High voltage insulation and gas absorption of polymers in high pressure argon and xenon gases. Journal of Instrumentation, 13(10), P10002-P10002. doi:10.1088/1748-0221/13/10/p10002 es_ES
dc.description.references Okawa, M., Shioiri, T., Okubo, H., & Yanabu, S. (1988). Area effect on electric breakdown of copper and stainless steel electrodes in vacuum. IEEE Transactions on Electrical Insulation, 23(1), 77-81. doi:10.1109/14.2336 es_ES
dc.description.references Kihara, T. (1952). The Mathematical Theory of Electrical Discharges in Gases. Reviews of Modern Physics, 24(1), 45-61. doi:10.1103/revmodphys.24.45 es_ES
dc.description.references Hamaker, A., Brodeur, M., Kelly, J. M., Long, J., Nicoloff, C., Ryan, S., … Wada, M. (2016). Experimental investigation of the repelling force from RF carpets. International Journal of Mass Spectrometry, 404, 14-19. doi:10.1016/j.ijms.2016.04.004 es_ES


This item appears in the following Collection(s)

Show simple item record