Alexopoulos, A., Dellaportas, P., & Forster, J. J. (2018). Bayesian forecasting of mortality rates by using latent Gaussian models. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 689-711. doi:10.1111/rssa.12422
Callot, L., Haldrup, N., & Kallestrup-Lamb, M. (2015). Deterministic and stochastic trends in the Lee–Carter mortality model. Applied Economics Letters, 23(7), 486-493. doi:10.1080/13504851.2015.1083075
Carfora, M. F., Cutillo, L., & Orlando, A. (2017). A quantitative comparison of stochastic mortality models on Italian population data. Computational Statistics & Data Analysis, 112, 198-214. doi:10.1016/j.csda.2017.03.012
[+]
Alexopoulos, A., Dellaportas, P., & Forster, J. J. (2018). Bayesian forecasting of mortality rates by using latent Gaussian models. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 689-711. doi:10.1111/rssa.12422
Callot, L., Haldrup, N., & Kallestrup-Lamb, M. (2015). Deterministic and stochastic trends in the Lee–Carter mortality model. Applied Economics Letters, 23(7), 486-493. doi:10.1080/13504851.2015.1083075
Carfora, M. F., Cutillo, L., & Orlando, A. (2017). A quantitative comparison of stochastic mortality models on Italian population data. Computational Statistics & Data Analysis, 112, 198-214. doi:10.1016/j.csda.2017.03.012
Booth, H., Hyndman, R. J., Tickle, L., & de Jong, P. (2006). Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions. Demographic Research, 15, 289-310. doi:10.4054/demres.2006.15.9
Salhi, Y., & Loisel, S. (2016). Basis risk modelling: a cointegration-based approach. Statistics, 51(1), 205-221. doi:10.1080/02331888.2016.1259806
Postigo-Boix, M., Agüero, R., & Melús-Moreno, J. L. (2019). An alternative procedure to obtain the mortality rate with non-linear functions: Application to the case of the Spanish population. PLOS ONE, 14(10), e0223789. doi:10.1371/journal.pone.0223789
Belliard, M., & Williams, I. (2013). Proyección estocástica de la mortalidad. Una aplicación de Lee-Carter en la Argentina. Revista Latinoamericana de Población, 7(13), 129-148. doi:10.31406/relap2013.v7.i2.n13.6
García Guerrero, V. M., & Ordorica Mellado, M. (2012). Proyección estocástica de la mortalidad mexicana por medio del método de Lee-Carter / Stochastic Projection of Mexican Mortality through the Lee-Carter Method. Estudios Demográficos y Urbanos, 27(2), 409. doi:10.24201/edu.v27i2.1418
Diaz, G., Debón, A., & Giner-Bosch, V. (2018). Mortality forecasting in Colombia from abridged life tables by sex. Genus, 74(1). doi:10.1186/s41118-018-0038-6
Mason, R. L., Tracy, N. D., & Young, J. C. (1995). Decomposition ofT2 for Multivariate Control Chart Interpretation. Journal of Quality Technology, 27(2), 99-108. doi:10.1080/00224065.1995.11979573
Shewhart, W. A. (1927). Quality Control. Bell System Technical Journal, 6(4), 722-735. doi:10.1002/j.1538-7305.1927.tb00215.x
Woodall, W. H. (2006). The Use of Control Charts in Health-Care and Public-Health Surveillance. Journal of Quality Technology, 38(2), 89-104. doi:10.1080/00224065.2006.11918593
Vetter, T. R., & Morrice, D. (2019). Statistical Process Control. Anesthesia & Analgesia, 128(2), 374-382. doi:10.1213/ane.0000000000003977
Benneyan, J. C. (2003). Statistical process control as a tool for research and healthcare improvement. Quality and Safety in Health Care, 12(6), 458-464. doi:10.1136/qhc.12.6.458
Imam, N., Spelman, T., Johnson, S. A., & Worth, L. J. (2019). Statistical Process Control Charts for Monitoring Staphylococcus aureus Bloodstream Infections in Australian Health Care Facilities. Quality Management in Health Care, 28(1), 39-44. doi:10.1097/qmh.0000000000000201
Williamson, G. D., & Weatherby Hudson, G. (1999). A monitoring system for detecting aberrations in public health surveillance reports. Statistics in Medicine, 18(23), 3283-3298. doi:10.1002/(sici)1097-0258(19991215)18:23<3283::aid-sim316>3.0.co;2-z
Thacker, S. B., Stroup, D. F., Rothenberg, R. B., & Brownson, R. C. (1995). Public health surveillance for chronic conditions: A scientific basis for decisions. Statistics in Medicine, 14(5-7), 629-641. doi:10.1002/sim.4780140520
Yue, J., Lai, X., Liu, L., & Lai, P. B. S. (2017). A new VLAD-based control chart for detecting surgical outcomes. Statistics in Medicine, 36(28), 4540-4547. doi:10.1002/sim.7362
Chamberlin, W. H., Lane, K. A., Kennedy, J. N., Bradley, S. D., & Rice, C. L. (1993). Monitoring intensive care unit performance using statistical quality control charts. International Journal of Clinical Monitoring and Computing, 10(3), 155-161. doi:10.1007/bf01246449
Marshall, T., & Mohammed, M. A. (2007). Case-mix and the use of control charts in monitoring mortality rates after coronary artery bypass. BMC Health Services Research, 7(1). doi:10.1186/1472-6963-7-63
Briceno-Leon, R., Villaveces, A., & Concha-Eastman, A. (2008). Understanding the uneven distribution of the incidence of homicide in Latin America. International Journal of Epidemiology, 37(4), 751-757. doi:10.1093/ije/dyn153
Gaviria, A. (2000). Increasing returns and the evolution of violent crime: the case of Colombia. Journal of Development Economics, 61(1), 1-25. doi:10.1016/s0304-3878(99)00059-0
Latin American Human Mortality Databasewww.lamortalidad.org
BOOTH, H., MAINDONALD, J., & SMITH, L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies, 56(3), 325-336. doi:10.1080/00324720215935
Renshaw, A. E., & Haberman, S. (2003). Lee–Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics, 33(2), 255-272. doi:10.1016/s0167-6687(03)00138-0
Debón, A., Montes, F., & Puig, F. (2008). Modelling and forecasting mortality in Spain. European Journal of Operational Research, 189(3), 624-637. doi:10.1016/j.ejor.2006.07.050
Debón, A., Martínez-Ruiz, F., & Montes, F. (2010). A geostatistical approach for dynamic life tables: The effect of mortality on remaining lifetime and annuities. Insurance: Mathematics and Economics, 47(3), 327-336. doi:10.1016/j.insmatheco.2010.07.007
Wang, D., & Lu, P. (2005). Modelling and forecasting mortality distributions in England and Wales using the Lee–Carter model. Journal of Applied Statistics, 32(9), 873-885. doi:10.1080/02664760500163441
Renshaw, A. E., & Haberman, S. (2008). On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee–Carter modelling. Insurance: Mathematics and Economics, 42(2), 797-816. doi:10.1016/j.insmatheco.2007.08.009
Coelho, E., & Nunes, L. C. (2011). Forecasting mortality in the event of a structural change. Journal of the Royal Statistical Society: Series A (Statistics in Society), 174(3), 713-736. doi:10.1111/j.1467-985x.2010.00687.x
Villegas, A. M., Kaishev, V. K., & Millossovich, P. (2018). StMoMo: An R Package for Stochastic Mortality Modeling. Journal of Statistical Software, 84(3). doi:10.18637/jss.v084.i03
Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate Control Charts for Individual Observations. Journal of Quality Technology, 24(2), 88-95. doi:10.1080/00224065.1992.12015232
Champ, C. W., & Jones-Farmer, L. A. (2007). Properties of Multivariate Control Charts with Estimated Parameters. Sequential Analysis, 26(2), 153-169. doi:10.1080/07474940701247040
gnm: Generalized Nonlinear Models. R Package Version 1.0-8https://CRAN.R-project.org/package=gnm
qcc: Quality Control Charting. R Package Version 2.7https://CRAN.R-project.org/package=qcc
Urdinola, B. P., Torres Áviles†, F., & Velasco, J. A. (2017). The Homicide Atlas in Colombia: Contagion and Under-Registration for Small Areas. Cuadernos de Geografía: Revista Colombiana de Geografía, 26(1), 101-118. doi:10.15446/rcdg.v26n1.55429
[-]