- -

Multivariate Control Chart and Lee-Carter Models to Study Mortality Changes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multivariate Control Chart and Lee-Carter Models to Study Mortality Changes

Mostrar el registro completo del ítem

Diaz-Rojo, G.; Debón Aucejo, AM.; Mosquera, J. (2020). Multivariate Control Chart and Lee-Carter Models to Study Mortality Changes. Mathematics. 8(11):1-17. https://doi.org/10.3390/math8112093

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162259

Ficheros en el ítem

Metadatos del ítem

Título: Multivariate Control Chart and Lee-Carter Models to Study Mortality Changes
Autor: Diaz-Rojo, Gisou Debón Aucejo, Ana María Mosquera, Jaime
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Fecha difusión:
Resumen:
[EN] The mortality structure of a population usually reflects the economic and social development of the country. The purpose of this study was to identify moments in time and age intervals at which the observed probability ...[+]
Palabras clave: Lee-Carter model , Life table , Multivariate control charts , T2 control chart , MTY decomposition
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematics. (eissn: 2227-7390 )
DOI: 10.3390/math8112093
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/math8112093
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2013-45381-P/ES/DIFERENCIAS DE LONGEVIDAD EN LA UNION EUROPEA: APLICACION DE NUEVOS METODOS PARA SU EVALUACION Y ANALISIS/
Agradecimientos:
This research received external funding from the Universitat Politecnica de Valencia (UPV) and the Universidad del Tolima (UT) to cover translation and publication costs.
Tipo: Artículo

References

Alexopoulos, A., Dellaportas, P., & Forster, J. J. (2018). Bayesian forecasting of mortality rates by using latent Gaussian models. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 689-711. doi:10.1111/rssa.12422

Callot, L., Haldrup, N., & Kallestrup-Lamb, M. (2015). Deterministic and stochastic trends in the Lee–Carter mortality model. Applied Economics Letters, 23(7), 486-493. doi:10.1080/13504851.2015.1083075

Carfora, M. F., Cutillo, L., & Orlando, A. (2017). A quantitative comparison of stochastic mortality models on Italian population data. Computational Statistics & Data Analysis, 112, 198-214. doi:10.1016/j.csda.2017.03.012 [+]
Alexopoulos, A., Dellaportas, P., & Forster, J. J. (2018). Bayesian forecasting of mortality rates by using latent Gaussian models. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 689-711. doi:10.1111/rssa.12422

Callot, L., Haldrup, N., & Kallestrup-Lamb, M. (2015). Deterministic and stochastic trends in the Lee–Carter mortality model. Applied Economics Letters, 23(7), 486-493. doi:10.1080/13504851.2015.1083075

Carfora, M. F., Cutillo, L., & Orlando, A. (2017). A quantitative comparison of stochastic mortality models on Italian population data. Computational Statistics & Data Analysis, 112, 198-214. doi:10.1016/j.csda.2017.03.012

Booth, H., Hyndman, R. J., Tickle, L., & de Jong, P. (2006). Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions. Demographic Research, 15, 289-310. doi:10.4054/demres.2006.15.9

Salhi, Y., & Loisel, S. (2016). Basis risk modelling: a cointegration-based approach. Statistics, 51(1), 205-221. doi:10.1080/02331888.2016.1259806

Postigo-Boix, M., Agüero, R., & Melús-Moreno, J. L. (2019). An alternative procedure to obtain the mortality rate with non-linear functions: Application to the case of the Spanish population. PLOS ONE, 14(10), e0223789. doi:10.1371/journal.pone.0223789

Belliard, M., & Williams, I. (2013). Proyección estocástica de la mortalidad. Una aplicación de Lee-Carter en la Argentina. Revista Latinoamericana de Población, 7(13), 129-148. doi:10.31406/relap2013.v7.i2.n13.6

García Guerrero, V. M., & Ordorica Mellado, M. (2012). Proyección estocástica de la mortalidad mexicana por medio del método de Lee-Carter / Stochastic Projection of Mexican Mortality through the Lee-Carter Method. Estudios Demográficos y Urbanos, 27(2), 409. doi:10.24201/edu.v27i2.1418

Diaz, G., Debón, A., & Giner-Bosch, V. (2018). Mortality forecasting in Colombia from abridged life tables by sex. Genus, 74(1). doi:10.1186/s41118-018-0038-6

Mason, R. L., Tracy, N. D., & Young, J. C. (1995). Decomposition ofT2 for Multivariate Control Chart Interpretation. Journal of Quality Technology, 27(2), 99-108. doi:10.1080/00224065.1995.11979573

Shewhart, W. A. (1927). Quality Control. Bell System Technical Journal, 6(4), 722-735. doi:10.1002/j.1538-7305.1927.tb00215.x

Woodall, W. H. (2006). The Use of Control Charts in Health-Care and Public-Health Surveillance. Journal of Quality Technology, 38(2), 89-104. doi:10.1080/00224065.2006.11918593

Vetter, T. R., & Morrice, D. (2019). Statistical Process Control. Anesthesia & Analgesia, 128(2), 374-382. doi:10.1213/ane.0000000000003977

Benneyan, J. C. (2003). Statistical process control as a tool for research and healthcare improvement. Quality and Safety in Health Care, 12(6), 458-464. doi:10.1136/qhc.12.6.458

Imam, N., Spelman, T., Johnson, S. A., & Worth, L. J. (2019). Statistical Process Control Charts for Monitoring Staphylococcus aureus Bloodstream Infections in Australian Health Care Facilities. Quality Management in Health Care, 28(1), 39-44. doi:10.1097/qmh.0000000000000201

Williamson, G. D., & Weatherby Hudson, G. (1999). A monitoring system for detecting aberrations in public health surveillance reports. Statistics in Medicine, 18(23), 3283-3298. doi:10.1002/(sici)1097-0258(19991215)18:23<3283::aid-sim316>3.0.co;2-z

Thacker, S. B., Stroup, D. F., Rothenberg, R. B., & Brownson, R. C. (1995). Public health surveillance for chronic conditions: A scientific basis for decisions. Statistics in Medicine, 14(5-7), 629-641. doi:10.1002/sim.4780140520

Yue, J., Lai, X., Liu, L., & Lai, P. B. S. (2017). A new VLAD-based control chart for detecting surgical outcomes. Statistics in Medicine, 36(28), 4540-4547. doi:10.1002/sim.7362

Chamberlin, W. H., Lane, K. A., Kennedy, J. N., Bradley, S. D., & Rice, C. L. (1993). Monitoring intensive care unit performance using statistical quality control charts. International Journal of Clinical Monitoring and Computing, 10(3), 155-161. doi:10.1007/bf01246449

Marshall, T., & Mohammed, M. A. (2007). Case-mix and the use of control charts in monitoring mortality rates after coronary artery bypass. BMC Health Services Research, 7(1). doi:10.1186/1472-6963-7-63

Briceno-Leon, R., Villaveces, A., & Concha-Eastman, A. (2008). Understanding the uneven distribution of the incidence of homicide in Latin America. International Journal of Epidemiology, 37(4), 751-757. doi:10.1093/ije/dyn153

Gaviria, A. (2000). Increasing returns and the evolution of violent crime: the case of Colombia. Journal of Development Economics, 61(1), 1-25. doi:10.1016/s0304-3878(99)00059-0

Latin American Human Mortality Databasewww.lamortalidad.org

BOOTH, H., MAINDONALD, J., & SMITH, L. (2002). Applying Lee-Carter under conditions of variable mortality decline. Population Studies, 56(3), 325-336. doi:10.1080/00324720215935

Renshaw, A. E., & Haberman, S. (2003). Lee–Carter mortality forecasting with age-specific enhancement. Insurance: Mathematics and Economics, 33(2), 255-272. doi:10.1016/s0167-6687(03)00138-0

Debón, A., Montes, F., & Puig, F. (2008). Modelling and forecasting mortality in Spain. European Journal of Operational Research, 189(3), 624-637. doi:10.1016/j.ejor.2006.07.050

Debón, A., Martínez-Ruiz, F., & Montes, F. (2010). A geostatistical approach for dynamic life tables: The effect of mortality on remaining lifetime and annuities. Insurance: Mathematics and Economics, 47(3), 327-336. doi:10.1016/j.insmatheco.2010.07.007

Wang, D., & Lu, P. (2005). Modelling and forecasting mortality distributions in England and Wales using the Lee–Carter model. Journal of Applied Statistics, 32(9), 873-885. doi:10.1080/02664760500163441

Renshaw, A. E., & Haberman, S. (2008). On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee–Carter modelling. Insurance: Mathematics and Economics, 42(2), 797-816. doi:10.1016/j.insmatheco.2007.08.009

Coelho, E., & Nunes, L. C. (2011). Forecasting mortality in the event of a structural change. Journal of the Royal Statistical Society: Series A (Statistics in Society), 174(3), 713-736. doi:10.1111/j.1467-985x.2010.00687.x

Villegas, A. M., Kaishev, V. K., & Millossovich, P. (2018). StMoMo: An R Package for Stochastic Mortality Modeling. Journal of Statistical Software, 84(3). doi:10.18637/jss.v084.i03

Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate Control Charts for Individual Observations. Journal of Quality Technology, 24(2), 88-95. doi:10.1080/00224065.1992.12015232

Champ, C. W., & Jones-Farmer, L. A. (2007). Properties of Multivariate Control Charts with Estimated Parameters. Sequential Analysis, 26(2), 153-169. doi:10.1080/07474940701247040

gnm: Generalized Nonlinear Models. R Package Version 1.0-8https://CRAN.R-project.org/package=gnm

qcc: Quality Control Charting. R Package Version 2.7https://CRAN.R-project.org/package=qcc

Urdinola, B. P., Torres Áviles†, F., & Velasco, J. A. (2017). The Homicide Atlas in Colombia: Contagion and Under-Registration for Small Areas. Cuadernos de Geografía: Revista Colombiana de Geografía, 26(1), 101-118. doi:10.15446/rcdg.v26n1.55429

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem