- -

Exploring TOF Capabilities of PET Detector Blocks Based on Large Monolithic Crystals and Analog SiPMs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploring TOF Capabilities of PET Detector Blocks Based on Large Monolithic Crystals and Analog SiPMs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lamprou, Efthymios es_ES
dc.contributor.author González Martínez, Antonio Javier es_ES
dc.contributor.author Sánchez Martínez, Filomeno es_ES
dc.contributor.author Benlloch Baviera, Jose María es_ES
dc.date.accessioned 2021-02-25T04:49:06Z
dc.date.available 2021-02-25T04:49:06Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 1120-1797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162357
dc.description.abstract [EN] Monolithic scintillators are more frequently used in PET instrumentation due to their advantages in terms of accurate position estimation of the impinging gamma rays both planar and depth of interaction, their increased efficiency, and expected timing capabilities. Such timing performance has been studied when those blocks are coupled to digital photosensors showing an excellent timing resolution. In this work we study the timing behaviour of detectors composed by monolithic crystals and analog SiPMs read out by an ASIC. The scintillation light spreads across the crystal towards the photosensors, resulting in a high number of SiPMs and ASIC channels fired. This has been studied in relation with the Coincidence Timing Resolution (CTR). We have used LYSO monolithic blocks with dimensions of 50 x 50 x 15 mm(3) coupled to SiPM arrays (8 x 8 elements with 6 x 6 mm(2) area) which compose detectors suitable for clinical applications. While a CTR as good as 186 ps FWHM was achieved for a pair of 3 x 3 x 5 mm(3) LYSO crystals, when using the monolithic block and the SiPM arrays, a raw CTR over 1 ns was observed. An optimal timestamp assignment was studied as well as compensation methods for the time-skew and time-walk errors. This work describes all steps followed to improve the CTR. Eventually, an average detector time resolution of 497 ps FWHM was measured for the whole thick monolithic block. This improves to 380 ps FWHM for a central volume of interest near the photosensors. The timing dependency with the photon depth of interaction and planar position are also included. es_ES
dc.description.sponsorship This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 695536). It has also been supported by the Spanish Ministerio de Economia, Industria y Competitividad under Grant TEC2016-79884-C2-1-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Physica Medica es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject TOF-PET es_ES
dc.subject Monolithic crystal es_ES
dc.subject ASIC es_ES
dc.subject SiPMs es_ES
dc.title Exploring TOF Capabilities of PET Detector Blocks Based on Large Monolithic Crystals and Analog SiPMs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ejmp.2019.12.004 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-79884-C2-1-R/ES/DESARROLLO DEL HARDWARE PARA SISTEMA DE DIAGNOSTICO POR IMAGEN MOLECULAR PARA CORAZON EN CONDICIONES DE ESTRES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/695536/EU/Innovative PET scanner for dynamic imaging/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Lamprou, E.; González Martínez, AJ.; Sánchez Martínez, F.; Benlloch Baviera, JM. (2020). Exploring TOF Capabilities of PET Detector Blocks Based on Large Monolithic Crystals and Analog SiPMs. Physica Medica. 70:10-18. https://doi.org/10.1016/j.ejmp.2019.12.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.ejmp.2019.12.004 es_ES
dc.description.upvformatpinicio 10 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 70 es_ES
dc.identifier.pmid 31935602 es_ES
dc.identifier.pmcid PMC7026714 es_ES
dc.relation.pasarela S\406022 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Surti, S. (2014). Update on Time-of-Flight PET Imaging. Journal of Nuclear Medicine, 56(1), 98-105. doi:10.2967/jnumed.114.145029 es_ES
dc.description.references Spanoudaki, V. C., & Levin, C. S. (2010). Photo-Detectors for Time of Flight Positron Emission Tomography (ToF-PET). Sensors, 10(11), 10484-10505. doi:10.3390/s101110484 es_ES
dc.description.references Szczesniak, T., Moszynski, M., Swiderski, L., Nassalski, A., Lavoute, P., & Kapusta, M. (2009). Fast Photomultipliers for TOF PET. IEEE Transactions on Nuclear Science, 56(1), 173-181. doi:10.1109/tns.2008.2008992 es_ES
dc.description.references Renker, D. (2007). New trends on photodetectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 571(1-2), 1-6. doi:10.1016/j.nima.2006.10.016 es_ES
dc.description.references Kim, C. L., Wang, G.-C., & Dolinsky, S. (2009). Multi-Pixel Photon Counters for TOF PET Detector and Its Challenges. IEEE Transactions on Nuclear Science, 56(5), 2580-2585. doi:10.1109/tns.2009.2028075 es_ES
dc.description.references Moses, W. W. (2002). Current trends in scintillator detectors and materials. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 487(1-2), 123-128. doi:10.1016/s0168-9002(02)00955-5 es_ES
dc.description.references Gundacker, S., Auffray, E., Pauwels, K., & Lecoq, P. (2016). Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET. Physics in Medicine and Biology, 61(7), 2802-2837. doi:10.1088/0031-9155/61/7/2802 es_ES
dc.description.references Gundacker, S., Acerbi, F., Auffray, E., Ferri, A., Gola, A., Nemallapudi, M. V., … Lecoq, P. (2016). State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs. Journal of Instrumentation, 11(08), P08008-P08008. doi:10.1088/1748-0221/11/08/p08008 es_ES
dc.description.references Surti, S., & Karp, J. S. (2016). Advances in time-of-flight PET. Physica Medica, 32(1), 12-22. doi:10.1016/j.ejmp.2015.12.007 es_ES
dc.description.references Gundacker, S., Knapitsch, A., Auffray, E., Jarron, P., Meyer, T., & Lecoq, P. (2014). Time resolution deterioration with increasing crystal length in a TOF-PET system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 737, 92-100. doi:10.1016/j.nima.2013.11.025 es_ES
dc.description.references Marcinkowski, R., España, S., Van Holen, R., & Vandenberghe, S. (2014). Optimized light sharing for high-resolution TOF PET detector based on digital silicon photomultipliers. Physics in Medicine and Biology, 59(23), 7125-7139. doi:10.1088/0031-9155/59/23/7125 es_ES
dc.description.references González-Montoro, A., Sánchez, F., Martí, R., Hernández, L., Aguilar, A., Barberá, J., … González, A. J. (2018). Detector block performance based on a monolithic LYSO crystal using a novel signal multiplexing method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 372-377. doi:10.1016/j.nima.2017.10.098 es_ES
dc.description.references Xi, D., Xie, Q., Zhu, J., Lin, L., Niu, M., Xiao, P., … Kao, C.-M. (2012). Optimization of the SiPM Pixel Size for a Monolithic PET Detector. Physics Procedia, 37, 1497-1503. doi:10.1016/j.phpro.2012.04.101 es_ES
dc.description.references Gonzalez-Montoro A, Aguilar A, Canizares G, Conde P, Hernandez L, Vidal LF, et al. Performance Study of a Large Monolithic LYSO PET Detector With Accurate Photon DOI Using Retroreflector Layers. IEEE Trans Rad Plasma Med Sci. PP. 1-1. DOI: 10.1109/TRPMS.2017.2692819. es_ES
dc.description.references Krishnamoorthy, S., Blankemeyer, E., Mollet, P., Surti, S., Van Holen, R., & Karp, J. S. (2018). Performance evaluation of the MOLECUBES β-CUBE—a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Physics in Medicine & Biology, 63(15), 155013. doi:10.1088/1361-6560/aacec3 es_ES
dc.description.references González-Montoro, A., Sánchez, F., Bruyndonckx, P., Cañizares, G., Benlloch, J. M., & González, A. J. (2019). Novel method to measure the intrinsic spatial resolution in PET detectors based on monolithic crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 920, 58-67. doi:10.1016/j.nima.2018.12.056 es_ES
dc.description.references Van Dam, H. T., Borghi, G., Seifert, S., & Schaart, D. R. (2013). Sub-200 ps CRT in monolithic scintillator PET detectors using digital SiPM arrays and maximum likelihood interaction time estimation. Physics in Medicine and Biology, 58(10), 3243-3257. doi:10.1088/0031-9155/58/10/3243 es_ES
dc.description.references Di Francesco A, Bugalho R, Oliveira L, Pacher L, Rivetti A, Rolo M, et al. TOFPET2: A high-performance ASIC for time and amplitude measurements of SiPM signals in time-of-flight applications. Journal of Instrumentation, vol. 11, no. 03, p. C03042. es_ES
dc.description.references TOFPET2 ASIC Evaluation kit - Hardware User Guide (v1.2), v1.2, PETsys Electronics SA., 2018. es_ES
dc.description.references Lamprou, E., Aguilar, A., González-Montoro, A., Monzó, J. M., Cañizares, G., Iranzo, S., … Benlloch, J. M. (2018). PET detector block with accurate 4D capabilities. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 912, 132-136. doi:10.1016/j.nima.2017.11.002 es_ES
dc.description.references Acerbi, F., & Gundacker, S. (2019). Understanding and simulating SiPMs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 926, 16-35. doi:10.1016/j.nima.2018.11.118 es_ES
dc.description.references Schug D, Nadig V, Weissler B, Gebhardt P, Schulz V. Initial Measurements with the PETsys TOFPET2 ASIC Evaluation Kit and a Characterization of the ASIC TDC IEEE Trans Rad Plasma Med Sci. PP. 1-1. DOI: 10.1109/TRPMS.2018.2884564. es_ES
dc.description.references Seifert, S., van Dam, H. T., Vinke, R., Dendooven, P., Lohner, H., Beekman, F. J., & Schaart, D. R. (2012). A Comprehensive Model to Predict the Timing Resolution of SiPM-Based Scintillation Detectors: Theory and Experimental Validation. IEEE Transactions on Nuclear Science, 59(1), 190-204. doi:10.1109/tns.2011.2179314 es_ES
dc.description.references Vinke R, Olcott PD, Cates JW, Levin CS. The lower timing resolution bound for scintillators with non-negligible optical photon transport time in time-of-flight PET. Phys. Med. Phys. Med. Biol. 59 6215. Phys Med Biol. 2014; 59(20): 6215–29. es_ES
dc.description.references Gonzalez AJ, Sanchez F, Benlloch JM. 2018 Organ-Dedicated Molecular Imaging Systems. IEEE Trans Ratiat Plasma Med Sci. 2017; 2(5): 388–403. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem