- -

Antibacterial Activity of Linezolid against Gram-Negative Bacteria: Utilization of E-Poly-l-Lysine Capped Silica Xerogel as an Activating Carrier

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Antibacterial Activity of Linezolid against Gram-Negative Bacteria: Utilization of E-Poly-l-Lysine Capped Silica Xerogel as an Activating Carrier

Mostrar el registro completo del ítem

Guzel Kaya, G.; Medaglia, S.; Candela-Noguera, V.; Tormo-Mas, MÁ.; Marcos Martínez, MD.; Aznar, E.; Deveci, H.... (2020). Antibacterial Activity of Linezolid against Gram-Negative Bacteria: Utilization of E-Poly-l-Lysine Capped Silica Xerogel as an Activating Carrier. Pharmaceutics. 12(11):1-14. https://doi.org/10.3390/pharmaceutics12111126

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162358

Ficheros en el ítem

Metadatos del ítem

Título: Antibacterial Activity of Linezolid against Gram-Negative Bacteria: Utilization of E-Poly-l-Lysine Capped Silica Xerogel as an Activating Carrier
Autor: Guzel Kaya, Gulcihan Medaglia, Serena Candela-Noguera, Vicente Tormo-Mas, María Ángeles Marcos Martínez, María Dolores Aznar, Elena Deveci, Huseyin Martínez-Máñez, Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] In recent times, many approaches have been developed against drug resistant Gram-negative bacteria. However, low-cost high effective materials which could broaden the spectrum of antibiotics are still needed. In this ...[+]
Palabras clave: Antibacterial activity , Linezolid , Mesoporous material , Silica xerogel , E-poly-l-lysine
Derechos de uso: Reconocimiento (by)
Fuente:
Pharmaceutics. (eissn: 1999-4923 )
DOI: 10.3390/pharmaceutics12111126
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/pharmaceutics12111126
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-82251-R/ES/NUEVAS ESTRATEGIAS DE PREVENCION Y DIAGNOSTICO DE LAS INFECCIONES RELACIONADAS CON DISPOSITIVOS BIOMEDICOS CAUSADOS POR STAPHYLOCOCCUS SPP/
...[+]
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-82251-R/ES/NUEVAS ESTRATEGIAS DE PREVENCION Y DIAGNOSTICO DE LAS INFECCIONES RELACIONADAS CON DISPOSITIVOS BIOMEDICOS CAUSADOS POR STAPHYLOCOCCUS SPP/
info:eu-repo/grantAgreement/TUBITAK//2214-A/
info:eu-repo/grantAgreement/Hacettepe Üniversitesi//2016-OYP-071/
info:eu-repo/grantAgreement/MECD//FPU15%2F02753/ES/FPU15%2F02753/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
[-]
Agradecimientos:
We thank the Spanish Government (projects RTI2018-100910-B-C41, RTI2018-101599-B-C22-AR and SAF2017-82251-R (MCUI/AEI/FEDER, UE)) and the Generalitat Valenciana (project PROMETEO/2018/024) for support. G.G.K. would like ...[+]
Tipo: Artículo

References

Hammad, A., Abutaleb, N. S., Elsebaei, M. M., Norvil, A. B., Alswah, M., Ali, A. O., … Mayhoub, A. S. (2019). From Phenylthiazoles to Phenylpyrazoles: Broadening the Antibacterial Spectrum toward Carbapenem-Resistant Bacteria. Journal of Medicinal Chemistry, 62(17), 7998-8010. doi:10.1021/acs.jmedchem.9b00720

Yarlagadda, V., Manjunath, G. B., Sarkar, P., Akkapeddi, P., Paramanandham, K., Shome, B. R., … Haldar, J. (2015). Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria. ACS Infectious Diseases, 2(2), 132-139. doi:10.1021/acsinfecdis.5b00114

Serri, A., Mahboubi, A., Zarghi, A., & Moghimi, H. R. (2018). PAMAM-dendrimer Enhanced Antibacterial Effect of Vancomycin Hydrochloride Against Gram-Negative Bacteria. Journal of Pharmacy & Pharmaceutical Sciences, 22, 10-21. doi:10.18433/jpps29659 [+]
Hammad, A., Abutaleb, N. S., Elsebaei, M. M., Norvil, A. B., Alswah, M., Ali, A. O., … Mayhoub, A. S. (2019). From Phenylthiazoles to Phenylpyrazoles: Broadening the Antibacterial Spectrum toward Carbapenem-Resistant Bacteria. Journal of Medicinal Chemistry, 62(17), 7998-8010. doi:10.1021/acs.jmedchem.9b00720

Yarlagadda, V., Manjunath, G. B., Sarkar, P., Akkapeddi, P., Paramanandham, K., Shome, B. R., … Haldar, J. (2015). Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria. ACS Infectious Diseases, 2(2), 132-139. doi:10.1021/acsinfecdis.5b00114

Serri, A., Mahboubi, A., Zarghi, A., & Moghimi, H. R. (2018). PAMAM-dendrimer Enhanced Antibacterial Effect of Vancomycin Hydrochloride Against Gram-Negative Bacteria. Journal of Pharmacy & Pharmaceutical Sciences, 22, 10-21. doi:10.18433/jpps29659

Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., & Martínez‐Máñez, R. (2019). Mesoporous Silica‐Based Materials with Bactericidal Properties. Small, 15(24), 1900669. doi:10.1002/smll.201900669

Rai, M., Ingle, A. P., Pandit, R., Paralikar, P., Gupta, I., Chaud, M. V., & dos Santos, C. A. (2017). Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. International Journal of Pharmaceutics, 532(1), 139-148. doi:10.1016/j.ijpharm.2017.08.127

Nicolosi, D., Scalia, M., Nicolosi, V. M., & Pignatello, R. (2010). Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria. International Journal of Antimicrobial Agents, 35(6), 553-558. doi:10.1016/j.ijantimicag.2010.01.015

Cottarel, G., & Wierzbowski, J. (2007). Combination drugs, an emerging option for antibacterial therapy. Trends in Biotechnology, 25(12), 547-555. doi:10.1016/j.tibtech.2007.09.004

Ulubayram, K., Calamak, S., Shahbazi, R., & Eroglu, I. (2015). Nanofibers Based Antibacterial Drug Design, Delivery and Applications. Current Pharmaceutical Design, 21(15), 1930-1943. doi:10.2174/1381612821666150302151804

Chen, C., & Yang, K. (2019). Ebselen bearing polar functionality: Identification of potent antibacterial agents against multidrug-resistant Gram-negative bacteria. Bioorganic Chemistry, 93, 103286. doi:10.1016/j.bioorg.2019.103286

Mas, N., Galiana, I., Mondragón, L., Aznar, E., Climent, E., Cabedo, N., … Amorós, P. (2013). Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles. Chemistry - A European Journal, 19(34), 11167-11171. doi:10.1002/chem.201302170

Sperandio, F., Huang, Y.-Y., & Hamblin, M. (2013). Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria. Recent Patents on Anti-Infective Drug Discovery, 8(2), 108-120. doi:10.2174/1574891x113089990012

Velikova, N., Mas, N., Miguel-Romero, L., Polo, L., Stolte, E., Zaccaria, E., … Wells, J. (2017). Broadening the antibacterial spectrum of histidine kinase autophosphorylation inhibitors via the use of ε-poly-L-lysine capped mesoporous silica-based nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 569-581. doi:10.1016/j.nano.2016.09.011

Hernández Montoto, A., Montes, R., Samadi, A., Gorbe, M., Terrés, J. M., Cao-Milán, R., … Martínez-Máñez, R. (2018). Gold Nanostars Coated with Mesoporous Silica Are Effective and Nontoxic Photothermal Agents Capable of Gate Keeping and Laser-Induced Drug Release. ACS Applied Materials & Interfaces, 10(33), 27644-27656. doi:10.1021/acsami.8b08395

García‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242

Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139

Moreno, V. M., Álvarez, E., Izquierdo‐Barba, I., Baeza, A., Serrano‐López, J., & Vallet‐Regí, M. (2020). Bacteria as Nanoparticles Carrier for Enhancing Penetration in a Tumoral Matrix Model. Advanced Materials Interfaces, 7(11), 1901942. doi:10.1002/admi.201901942

Shadjou, N., & Hasanzadeh, M. (2015). Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress. Materials Science and Engineering: C, 55, 401-409. doi:10.1016/j.msec.2015.05.027

Mas, N., Arcos, D., Polo, L., Aznar, E., Sánchez-Salcedo, S., Sancenón, F., … Martínez-Máñez, R. (2014). Towards the Development of Smart 3D «Gated Scaffolds» for On-Command Delivery. Small, 10(23), 4859-4864. doi:10.1002/smll.201401227

Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., … Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 313-327. doi:10.1016/j.nano.2014.09.014

Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511

Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580

Luis, B., Llopis‐Lorente, A., Rincón, P., Gadea, J., Sancenón, F., Aznar, E., … Martínez‐Máñez, R. (2019). An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angewandte Chemie International Edition, 58(42), 14986-14990. doi:10.1002/anie.201908867

Hasanzadeh, M., Shadjou, N., de la Guardia, M., Eskandani, M., & Sheikhzadeh, P. (2012). Mesoporous silica-based materials for use in biosensors. TrAC Trends in Analytical Chemistry, 33, 117-129. doi:10.1016/j.trac.2011.10.011

El-Safty, S. A., & Shenashen, M. A. (2020). Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Materials Today Bio, 5, 100044. doi:10.1016/j.mtbio.2020.100044

Pla, L., Santiago-Felipe, S., Tormo-Mas, M. Á., Pemán, J., Sancenón, F., Aznar, E., & Martínez-Máñez, R. (2020). Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection. Sensors and Actuators B: Chemical, 320, 128281. doi:10.1016/j.snb.2020.128281

Ciriminna, R., Fidalgo, A., Pandarus, V., Béland, F., Ilharco, L. M., & Pagliaro, M. (2013). The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications. Chemical Reviews, 113(8), 6592-6620. doi:10.1021/cr300399c

Ulker, Z., & Erkey, C. (2014). An emerging platform for drug delivery: Aerogel based systems. Journal of Controlled Release, 177, 51-63. doi:10.1016/j.jconrel.2013.12.033

Guzel Kaya, G., Yilmaz, E., & Deveci, H. (2018). Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: Enhanced thermal and acoustic insulation performance. Composites Part B: Engineering, 150, 1-6. doi:10.1016/j.compositesb.2018.05.039

Maleki, H., Durães, L., García-González, C. A., del Gaudio, P., Portugal, A., & Mahmoudi, M. (2016). Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in Colloid and Interface Science, 236, 1-27. doi:10.1016/j.cis.2016.05.011

Quintanar-Guerrero, D., Ganem-Quintanar, A., Nava-Arzaluz, M. G., & Piñón-Segundo, E. (2009). Silica xerogels as pharmaceutical drug carriers. Expert Opinion on Drug Delivery, 6(5), 485-498. doi:10.1517/17425240902902307

Pérez, N. A., Lima, E., Bosch, P., & Méndez-Vivar, J. (2014). Consolidating materials for the volcanic tuff in western Mexico. Journal of Cultural Heritage, 15(4), 352-358. doi:10.1016/j.culher.2013.07.010

Lemougna, P. N., Wang, K., Tang, Q., Nzeukou, A. N., Billong, N., Melo, U. C., & Cui, X. (2018). Review on the use of volcanic ashes for engineering applications. Resources, Conservation and Recycling, 137, 177-190. doi:10.1016/j.resconrec.2018.05.031

Marañón, E., Ulmanu, M., Fernández, Y., Anger, I., & Castrillón, L. (2006). Removal of ammonium from aqueous solutions with volcanic tuff. Journal of Hazardous Materials, 137(3), 1402-1409. doi:10.1016/j.jhazmat.2006.03.069

Brum, L. F. W., Santos, C. dos, Gnoatto, J. A., Moura, D. J., Santos, J. H. Z., & Brandelli, A. (2019). Silica xerogels as novel streptomycin delivery platforms. Journal of Drug Delivery Science and Technology, 53, 101210. doi:10.1016/j.jddst.2019.101210

Deon, M., Morawski, F. M., Passaia, C., Dalmás, M., Laranja, D. C., Malheiros, P. S., … Benvenutti, E. V. (2018). Chitosan-stabilized gold nanoparticles supported on silica/titania magnetic xerogel applied as antibacterial system. Journal of Sol-Gel Science and Technology, 89(1), 333-342. doi:10.1007/s10971-018-4699-6

Storm, W. L., Youn, J., Reighard, K. P., Worley, B. V., Lodaya, H. M., Shin, J. H., & Schoenfisch, M. H. (2014). Superhydrophobic nitric oxide-releasing xerogels. Acta Biomaterialia, 10(8), 3442-3448. doi:10.1016/j.actbio.2014.04.029

Guzel Kaya, G., Yilmaz, E., & Deveci, H. (2019). A novel silica xerogel synthesized from volcanic tuff as an adsorbent for high‐efficient removal of methylene blue: parameter optimization using Taguchi experimental design. Journal of Chemical Technology & Biotechnology, 94(8), 2729-2737. doi:10.1002/jctb.6089

Mohammadian, M., Jafarzadeh Kashi, T. S., Erfan, M., & Soorbaghi, F. P. (2018). Synthesis and characterization of silica aerogel as a promising drug carrier system. Journal of Drug Delivery Science and Technology, 44, 205-212. doi:10.1016/j.jddst.2017.12.017

Hu, W., Li, M., Chen, W., Zhang, N., Li, B., Wang, M., & Zhao, Z. (2016). Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 501, 83-91. doi:10.1016/j.colsurfa.2016.04.059

Zhu, H., Jia, S., Yang, H., Tang, W., Jia, Y., & Tan, Z. (2010). Characterization of bacteriostatic sausage casing: A composite of bacterial cellulose embedded with ɛ-polylysine. Food Science and Biotechnology, 19(6), 1479-1484. doi:10.1007/s10068-010-0211-y

Lei, Y., Hu, Z., Cao, B., Chen, X., & Song, H. (2017). Enhancements of thermal insulation and mechanical property of silica aerogel monoliths by mixing graphene oxide. Materials Chemistry and Physics, 187, 183-190. doi:10.1016/j.matchemphys.2016.11.064

Huang, D., Guo, C., Zhang, M., & Shi, L. (2017). Characteristics of nanoporous silica aerogel under high temperature from 950 °C to 1200 °C. Materials & Design, 129, 82-90. doi:10.1016/j.matdes.2017.05.024

Shi, K., Liu, Y., Ke, L., Fang, Y., Yang, R., & Cui, F. (2015). Epsilon-poly-l-lysine guided improving pulmonary delivery of supramolecular self-assembled insulin nanospheres. International Journal of Biological Macromolecules, 72, 1441-1450. doi:10.1016/j.ijbiomac.2014.10.023

Lin, L., Xue, L., Duraiarasan, S., & Haiying, C. (2018). Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Packaging and Shelf Life, 17, 134-141. doi:10.1016/j.fpsl.2018.06.013

Lv, J., Meng, Y., Shi, Y., Li, Y., Chen, J., & Sheng, F. (2019). Properties of epsilon‐polylysine·HCl/high‐methoxyl pectin polyelectrolyte complexes and their commercial application. Journal of Food Processing and Preservation, 44(2). doi:10.1111/jfpp.14320

Huber, L., Zhao, S., Malfait, W. J., Vares, S., & Koebel, M. M. (2017). Fast and Minimal-Solvent Production of Superinsulating Silica Aerogel Granulate. Angewandte Chemie International Edition, 56(17), 4753-4756. doi:10.1002/anie.201700836

Shi, F., Liu, J.-X., Song, K., & Wang, Z.-Y. (2010). Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying. Journal of Non-Crystalline Solids, 356(43), 2241-2246. doi:10.1016/j.jnoncrysol.2010.08.005

Sarawade, P. B., Kim, J.-K., Hilonga, A., & Kim, H. T. (2010). Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sciences, 12(5), 911-918. doi:10.1016/j.solidstatesciences.2010.01.032

Liu, G., Yang, R., & Li, M. (2010). Liquid adsorption of basic dye using silica aerogels with different textural properties. Journal of Non-Crystalline Solids, 356(4-5), 250-257. doi:10.1016/j.jnoncrysol.2009.11.019

Guzel Kaya, G., & Deveci, H. (2020). Effect of Aging Solvents on Physicochemical and Thermal Properties of Silica Xerogels Derived from Steel Slag. ChemistrySelect, 5(4), 1586-1591. doi:10.1002/slct.201903345

Rao, A. P., Rao, A. V., & Gurav, J. L. (2007). Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor. Journal of Porous Materials, 15(5), 507-512. doi:10.1007/s10934-007-9104-8

Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1915), 1333-1383. doi:10.1098/rsta.2009.0273

Ma, X., Lee, N.-H., Oh, H.-J., Kim, J.-W., Rhee, C.-K., Park, K.-S., & Kim, S.-J. (2010). Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 358(1-3), 172-176. doi:10.1016/j.colsurfa.2010.01.051

Tan, L., Tan, X., Fang, M., Yu, Z., & Wang, X. (2018). Effects of humic acid and Mg2+ on morphology and aggregation behavior of silica aerogels. Journal of Molecular Liquids, 264, 261-268. doi:10.1016/j.molliq.2018.05.064

Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine, Volume 12, 1227-1249. doi:10.2147/ijn.s121956

Hasan, J., Crawford, R. J., & Ivanova, E. P. (2013). Antibacterial surfaces: the quest for a new generation of biomaterials. Trends in Biotechnology, 31(5), 295-304. doi:10.1016/j.tibtech.2013.01.017

Katsikogianni, M., & Missirlis, Y. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells and Materials, 8, 37-57. doi:10.22203/ecm.v008a05

Ruiz-Rico, M., Fuentes, C., Pérez-Esteve, É., Jiménez-Belenguer, A. I., Quiles, A., Marcos, M. D., … Barat, J. M. (2015). Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles. Food Control, 56, 77-85. doi:10.1016/j.foodcont.2015.03.016

Zahedi Bialvaei, A., Rahbar, M., Yousefi, M., Asgharzadeh, M., & Samadi Kafil, H. (2016). Linezolid: a promising option in the treatment of Gram-positives. Journal of Antimicrobial Chemotherapy, 72(2), 354-364. doi:10.1093/jac/dkw450

Chang, Y., McLandsborough, L., & McClements, D. J. (2012). Cationic Antimicrobial (ε-Polylysine)–Anionic Polysaccharide (Pectin) Interactions: Influence of Polymer Charge on Physical Stability and Antimicrobial Efficacy. Journal of Agricultural and Food Chemistry, 60(7), 1837-1844. doi:10.1021/jf204384s

Shukla, S. C., Singh, A., Pandey, A. K., & Mishra, A. (2012). Review on production and medical applications of ɛ-polylysine. Biochemical Engineering Journal, 65, 70-81. doi:10.1016/j.bej.2012.04.001

Liu, J.-N., Chang, S.-L., Xu, P.-W., Tan, M.-H., Zhao, B., Wang, X.-D., & Zhao, Q.-S. (2020). Structural Changes and Antibacterial Activity of Epsilon-poly-l-lysine in Response to pH and Phase Transition and Their Mechanisms. Journal of Agricultural and Food Chemistry, 68(4), 1101-1109. doi:10.1021/acs.jafc.9b07524

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem