- -

Ethylene is Involved in Symptom Development and Ribosomal Stress of Tomato Plants upon Citrus Exocortis Viroid Infection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ethylene is Involved in Symptom Development and Ribosomal Stress of Tomato Plants upon Citrus Exocortis Viroid Infection

Mostrar el registro completo del ítem

Vázquez Prol, F.; López-Gresa, MP.; Rodrigo Bravo, I.; Belles Albert, JM.; Lisón, P. (2020). Ethylene is Involved in Symptom Development and Ribosomal Stress of Tomato Plants upon Citrus Exocortis Viroid Infection. Plants. 9(5):1-15. https://doi.org/10.3390/plants9050582

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162359

Ficheros en el ítem

Metadatos del ítem

Título: Ethylene is Involved in Symptom Development and Ribosomal Stress of Tomato Plants upon Citrus Exocortis Viroid Infection
Autor: Vázquez Prol, Francisco López-Gresa, María Pilar Rodrigo Bravo, Ismael Belles Albert, José Mª Lisón, Purificación
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Citrus exocortis viroid (CEVd) is known to cause different symptoms in citrus trees, and its mechanism of infection has been studied in tomato as an experimental host, producing ribosomal stress on these plants. Some ...[+]
Palabras clave: CEVd , Ethylene , Ribosome , Stress , Viroids , Biogenesis , RRNA , Tomato , Plants
Derechos de uso: Reconocimiento (by)
Fuente:
Plants. (eissn: 2223-7747 )
DOI: 10.3390/plants9050582
Editorial:
MDPI
Versión del editor: https://doi.org/10.3390/plants9050582
Tipo: Artículo

References

Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Adkar‐Purushothama, C. R., & Perreault, J. (2019). Current overview on viroid–host interactions. WIREs RNA, 11(2). doi:10.1002/wrna.1570

Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6 [+]
Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Adkar‐Purushothama, C. R., & Perreault, J. (2019). Current overview on viroid–host interactions. WIREs RNA, 11(2). doi:10.1002/wrna.1570

Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6

Verhoeven, J. th. j., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823-831. doi:10.1007/s10658-004-2493-5

López-Gresa, M. P., Lisón, P., Yenush, L., Conejero, V., Rodrigo, I., & Bellés, J. M. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLOS ONE, 11(11), e0166938. doi:10.1371/journal.pone.0166938

Wang, Y., Wu, J., Qiu, Y., Atta, S., Zhou, C., & Cao, M. (2019). Global Transcriptomic Analysis Reveals Insights into the Response of ‘Etrog’ Citron (Citrus medica L.) to Citrus Exocortis Viroid Infection. Viruses, 11(5), 453. doi:10.3390/v11050453

Jia, C., Zhang, L., Liu, L., Wang, J., Li, C., & Wang, Q. (2013). Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. Journal of Experimental Botany, 64(2), 637-650. doi:10.1093/jxb/ers360

Van Loon, L. C., Geraats, B. P. J., & Linthorst, H. J. M. (2006). Ethylene as a modulator of disease resistance in plants. Trends in Plant Science, 11(4), 184-191. doi:10.1016/j.tplants.2006.02.005

Bellés, J. M., & Conejero, V. (1989). Ethylene Mediation of the Viroid-Like Syndrome Induced by Ag+Ions inGynura aurantiacaDC Plants. Journal of Phytopathology, 124(4), 275-284. doi:10.1111/j.1439-0434.1989.tb04924.x

Dubois, M., Van den Broeck, L., & Inzé, D. (2018). The Pivotal Role of Ethylene in Plant Growth. Trends in Plant Science, 23(4), 311-323. doi:10.1016/j.tplants.2018.01.003

Yang, S. F., & Hoffman, N. E. (1984). Ethylene Biosynthesis and its Regulation in Higher Plants. Annual Review of Plant Physiology, 35(1), 155-189. doi:10.1146/annurev.pp.35.060184.001103

Wang, K. L.-C., Li, H., & Ecker, J. R. (2002). Ethylene Biosynthesis and Signaling Networks. The Plant Cell, 14(suppl 1), S131-S151. doi:10.1105/tpc.001768

Han, L., Li, G.-J., Yang, K.-Y., Mao, G., Wang, R., Liu, Y., & Zhang, S. (2010). Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. The Plant Journal, no-no. doi:10.1111/j.1365-313x.2010.04318.x

Bellés, J. M., Granell, A., Durán-vila, N., & Conejero, V. (1989). ACC Synthesis as the Activated Step Responsible for the Rise of Ethylene Production Accompanying Citrus Exocortis Viroid Infection in Tomato Plants. Journal of Phytopathology, 125(3), 198-208. doi:10.1111/j.1439-0434.1989.tb01061.x

Bellés, J. M., Vera, P., Durán-Vila, N., & Conejero, V. (1989). Ethylene production in tomato cultures infected with citrus exocortis viroid (CEV). Canadian Journal of Plant Pathology, 11(3), 256-262. doi:10.1080/07060668909501109

Bellés, J. M., & Conejero, V. (1989). Evolution of Ethylene Production, ACC and Conjugated ACC Levels Accompanying Symptom Development in Tomato and Gynura aurantiaca DC Leaves Infected with Citrus Exocortis Viroid (CEV). Journal of Phytopathology, 127(1), 81-85. doi:10.1111/j.1439-0434.1989.tb04506.x

Bellés, J. M., & Conejero, V. (1991). Suppression by Citrus Exocortis Viroid Infection of the Naturally Occurring Inhibitor of the Conversion of 1-aminocyclopropane-1-carboxylic Acid to Ethylene by Tomato Microsomes. Journal of Phytopathology, 132(3), 245-250. doi:10.1111/j.1439-0434.1991.tb00117.x

Ju, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., … Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences, 109(47), 19486-19491. doi:10.1073/pnas.1214848109

Aloni, R., Wolf, A., Feigenbaum, P., Avni, A., & Klee, H. J. (1998). The Never ripe Mutant Provides Evidence That Tumor-Induced Ethylene Controls the Morphogenesis ofAgrobacterium tumefaciens-Induced Crown Galls on Tomato Stems1,2. Plant Physiology, 117(3), 841-849. doi:10.1104/pp.117.3.841

Klee, H. J. (2004). Ethylene Signal Transduction. Moving beyond Arabidopsis. Plant Physiology, 135(2), 660-667. doi:10.1104/pp.104.040998

Chen, Y., Rofidal, V., Hem, S., Gil, J., Nosarzewska, J., Berger, N., … Chervin, C. (2019). Targeted Proteomics Allows Quantification of Ethylene Receptors and Reveals SlETR3 Accumulation in Never-Ripe Tomatoes. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01054

HU, X., NIE, X., SONG, Y., XIONG, X., & Tai, H. (2011). Ethylene is Involved but Plays a Limited Role in Tomato Chlorotic Dwarf Viroid-Induced Symptom Development in Tomato. Agricultural Sciences in China, 10(4), 544-552. doi:10.1016/s1671-2927(11)60035-7

Dı́az, J., ten Have, A., & van Kan, J. A. L. (2002). The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea  . Plant Physiology, 129(3), 1341-1351. doi:10.1104/pp.001453

Lund, S. T., Stall, R. E., & Klee, H. J. (1998). Ethylene Regulates the Susceptible Response to Pathogen Infection in Tomato. The Plant Cell, 10(3), 371-382. doi:10.1105/tpc.10.3.371

Tsolakidou, M.-D., Pantelides, lakovos S., Tzima, A. K., Kang, S., Paplomatas, E. J., & Tsaltas, D. (2019). Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase in Soil-Borne Fungal Pathogen Verticillium dahliae Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense. Molecular Plant-Microbe Interactions®, 32(6), 639-653. doi:10.1094/mpmi-07-18-0203-r

Więsyk, A., Iwanicka-Nowicka, R., Fogtman, A., Zagórski-Ostoja, W., & Góra-Sochacka, A. (2018). Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses, 10(5), 257. doi:10.3390/v10050257

Eiras, M., Nohales, M. A., Kitajima, E. W., Flores, R., & Daròs, J. A. (2010). Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 156(3), 529-533. doi:10.1007/s00705-010-0867-x

Dubé, A., Bisaillon, M., & Perreault, J.-P. (2009). Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid. Journal of Virology, 83(23), 12057-12067. doi:10.1128/jvi.01151-09

Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., … Rodrigo, I. (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. PROTEOMICS, 13(5), 833-844. doi:10.1002/pmic.201200286

Cottilli, P., Belda-Palazón, B., Adkar-Purushothama, C. R., Perreault, J.-P., Schleiff, E., Rodrigo, I., … Lisón, P. (2019). Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Research, 47(16), 8649-8661. doi:10.1093/nar/gkz679

Ohbayashi, I., Lin, C.-Y., Shinohara, N., Matsumura, Y., Machida, Y., Horiguchi, G., … Sugiyama, M. (2017). Evidence for a Role of ANAC082 as a Ribosomal Stress Response Mediator Leading to Growth Defects and Developmental Alterations in Arabidopsis. The Plant Cell, 29(10), 2644-2660. doi:10.1105/tpc.17.00255

Mayer, C., & Grummt, I. (2005). Cellular Stress and Nucleolar Function. Cell Cycle, 4(8), 1036-1038. doi:10.4161/cc.4.8.1925

Weis, B. L., Kovacevic, J., Missbach, S., & Schleiff, E. (2015). Plant-Specific Features of Ribosome Biogenesis. Trends in Plant Science, 20(11), 729-740. doi:10.1016/j.tplants.2015.07.003

Palm, D., Streit, D., Shanmugam, T., Weis, B. L., Ruprecht, M., Simm, S., & Schleiff, E. (2018). Plant-specific ribosome biogenesis factors in Arabidopsis thaliana with essential function in rRNA processing. Nucleic Acids Research, 47(4), 1880-1895. doi:10.1093/nar/gky1261

Christoffersen, R. E., & Laties, G. G. (1982). Ethylene regulation of gene expression in carrots. Proceedings of the National Academy of Sciences, 79(13), 4060-4063. doi:10.1073/pnas.79.13.4060

Marei, N., & Romani, R. (1971). Ethylene-stimulated Synthesis of Ribosomes, Ribonucleic Acid, and Protein in Developing Fig Fruits. Plant Physiology, 48(6), 806-808. doi:10.1104/pp.48.6.806

Spiers, J., Brady, C., Grierson, D., & Lee, E. (1984). Changes in Ribosome Organization and Messenger RNA Abundance in Ripening Tomato Fruits. Functional Plant Biology, 11(3), 225. doi:10.1071/pp9840225

Merchante, C., Brumos, J., Yun, J., Hu, Q., Spencer, K. R., Enríquez, P., … Alonso, J. M. (2015). Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2. Cell, 163(3), 684-697. doi:10.1016/j.cell.2015.09.036

Tornero, P., Rodrigo, I., Conejero, V., & Vera, P. (1993). Nucleotide Sequence of a cDNA Encoding a Pathogenesis-Related Protein, P1-p14, from Tomato (Lycopersicon esculentum). Plant Physiology, 102(1), 325-325. doi:10.1104/pp.102.1.325

Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7

Mehari, Z. H., Elad, Y., Rav-David, D., Graber, E. R., & Meller Harel, Y. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil, 395(1-2), 31-44. doi:10.1007/s11104-015-2445-1

Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y., & Inaba, A. (1998). Differential Expression and Internal Feedback Regulation of 1-Aminocyclopropane-1-Carboxylate Synthase, 1-Aminocyclopropane-1-Carboxylate Oxidase, and Ethylene Receptor Genes in Tomato Fruit during Development and Ripening. Plant Physiology, 118(4), 1295-1305. doi:10.1104/pp.118.4.1295

Katsarou, K., Wu, Y., Zhang, R., Bonar, N., Morris, J., Hedley, P. E., … Hornyik, C. (2016). Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection. PLOS ONE, 11(3), e0150711. doi:10.1371/journal.pone.0150711

Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053

O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J., & Klee, H. J. (2001). Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. The Plant Journal, 25(3), 315-323. doi:10.1046/j.1365-313x.2001.00968.x

Gómez, G., Martínez, G., & Pallás, V. (2008). Viroid-Induced Symptoms in Nicotiana benthamiana Plants Are Dependent on RDR6 Activity  . Plant Physiology, 148(1), 414-423. doi:10.1104/pp.108.120808

Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., & Zhang, S. (2012). Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis. PLoS Genetics, 8(6), e1002767. doi:10.1371/journal.pgen.1002767

Berrocal-Lobo, M., Molina, A., & Solano, R. (2002). Constitutive expression ofETHYLENE-RESPONSE-FACTOR1inArabidopsisconfers resistance to several necrotrophic fungi. The Plant Journal, 29(1), 23-32. doi:10.1046/j.1365-313x.2002.01191.x

Chowdhury, S., Basu, A., & Kundu, S. (2017). Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Scientific Reports, 7(1). doi:10.1038/s41598-017-17248-7

Shin, S., Lv, J., Fazio, G., Mazzola, M., & Zhu, Y. (2014). Transcriptional regulation of ethylene and jasmonate mediated defense response in apple (Malus domestica) root during Pythium ultimum infection. Horticulture Research, 1(1). doi:10.1038/hortres.2014.53

Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205-227. doi:10.1146/annurev.phyto.43.040204.135923

McDowell, J. M., & Dangl, J. L. (2000). Signal transduction in the plant immune response. Trends in Biochemical Sciences, 25(2), 79-82. doi:10.1016/s0968-0004(99)01532-7

Heck, S., Grau, T., Buchala, A., Metraux, J.-P., & Nawrath, C. (2003). Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. The Plant Journal, 36(3), 342-352. doi:10.1046/j.1365-313x.2003.01881.x

Conejero, V., & Granell, A. (1986). Stimulation of a viroid-like syndrome and the impairment of viroid infection in Gynura aurantiaca plants by treatment with silver ions. Physiological and Molecular Plant Pathology, 29(3), 317-323. doi:10.1016/s0048-4059(86)80048-0

Yan, S., & Dong, X. (2014). Perception of the plant immune signal salicylic acid. Current Opinion in Plant Biology, 20, 64-68. doi:10.1016/j.pbi.2014.04.006

Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., … Dong, X. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486(7402), 228-232. doi:10.1038/nature11162

Schott-Verdugo, S., Müller, L., Classen, E., Gohlke, H., & Groth, G. (2019). Structural Model of the ETR1 Ethylene Receptor Transmembrane Sensor Domain. Scientific Reports, 9(1). doi:10.1038/s41598-019-45189-w

Clark, D. G., Gubrium, E. K., Barrett, J. E., Nell, T. A., & Klee, H. J. (1999). Root Formation in Ethylene-Insensitive Plants. Plant Physiology, 121(1), 53-60. doi:10.1104/pp.121.1.53

Rodrı́guez, F. I., Esch, J. J., Hall, A. E., Binder, B. M., Schaller, G. E., & Bleecker, A. B. (1999). A Copper Cofactor for the Ethylene Receptor ETR1 from Arabidopsis. Science, 283(5404), 996-998. doi:10.1126/science.283.5404.996

Schaller, G. E., Ladd, A. N., Lanahan, M. B., Spanbauer, J. M., & Bleecker, A. B. (1995). The Ethylene Response Mediator ETR1 from Arabidopsis Forms a Disulfide-linked Dimer. Journal of Biological Chemistry, 270(21), 12526-12530. doi:10.1074/jbc.270.21.12526

Gao, Z., & Schaller, G. E. (2009). The role of receptor interactions in regulating ethylene signal transduction. Plant Signaling & Behavior, 4(12), 1152-1153. doi:10.4161/psb.4.12.9943

Gao, Z., Wen, C.-K., Binder, B. M., Chen, Y.-F., Chang, J., Chiang, Y.-H., … Schaller, G. E. (2008). Heteromeric Interactions among Ethylene Receptors Mediate Signaling in Arabidopsis. Journal of Biological Chemistry, 283(35), 23801-23810. doi:10.1074/jbc.m800641200

Grefen, C., Städele, K., Růžička, K., Obrdlik, P., Harter, K., & Horák, J. (2008). Subcellular Localization and In Vivo Interactions of the Arabidopsis thaliana Ethylene Receptor Family Members. Molecular Plant, 1(2), 308-320. doi:10.1093/mp/ssm015

Kim, H. J., Park, J.-H., Kim, J., Kim, J. J., Hong, S., Kim, J., … Hwang, D. (2018). Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis. Proceedings of the National Academy of Sciences, 115(21), E4930-E4939. doi:10.1073/pnas.1721523115

Semancik, J. S., Roistacher, C. N., Rivera-Bustamante, R., & Duran-Vila, N. (1988). Citrus Cachexia Viroid, a New Viroid of Citrus: Relationship to Viroids of the Exocortis Disease Complex. Journal of General Virology, 69(12), 3059-3068. doi:10.1099/0022-1317-69-12-3059

Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016

Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523

LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a0

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem