- -

Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films

Mostrar el registro completo del ítem

Reyes Tolosa, MD.; Alajami, M.; Montero Reguera, ÁE.; Damonte, L.; Hernández Fenollosa, MDLÁ. (2019). Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films. SN Applied Sciences. 1(10):1-9. https://doi.org/10.1007/s42452-019-1293-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162363

Ficheros en el ítem

Metadatos del ítem

Título: Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films
Autor: Reyes Tolosa, María Dolores Alajami, M. Montero Reguera, Álvaro Enrique Damonte, L.C. Hernández Fenollosa, María De Los Ángeles
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Fecha difusión:
Resumen:
[EN] The quality and properties of electrodeposited nanostructured ZnO films are improved when they are deposited on a crystal lattice-matching substrate. To this end, a highly conductive indium tin oxide substrate is ...[+]
Palabras clave: ZnO films , Electrodeposition , DC magnetron sputtering , Optical properties , Nanostructures , Band gap energy
Derechos de uso: Reconocimiento (by)
Fuente:
SN Applied Sciences. (issn: 2523-3963 )
DOI: 10.1007/s42452-019-1293-7
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/s42452-019-1293-7
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//IEDI-2016-00706/ES/IEDI-2016-00706/
Tipo: Artículo

References

Marotti RE, Giorgi P, Machado G, Dalchiele EA (2006) Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Sol Energy Mater Sol Cells 90:2356–2361

Marotti RE, Guerra DN, Bello C, Machado G (2004) Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol Energy Mater Sol Cells 82:85–103

Jin ZC, Hamberg I, Grangvist CG (1988) Optical properties of sputter-deposited ZnO: Al thin films. J Appl Phys 64:5117–5131 [+]
Marotti RE, Giorgi P, Machado G, Dalchiele EA (2006) Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Sol Energy Mater Sol Cells 90:2356–2361

Marotti RE, Guerra DN, Bello C, Machado G (2004) Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol Energy Mater Sol Cells 82:85–103

Jin ZC, Hamberg I, Grangvist CG (1988) Optical properties of sputter-deposited ZnO: Al thin films. J Appl Phys 64:5117–5131

Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46

Kiliç B, Wang L, Ozdemir O, Lu M, Tüzemen S (2013) One-dimensional (1D) ZnO nanowires dye sensitized solar cell. J Nanosci Nanotechnol 13:333–338

Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 9:1529–1598

Mallampati B, Nair SV, Ruda HE, Philipose U (2015) ZnO nanowire based photoconductor with high photoconductive gain. Mater Res Soc Symp Proc 1805:720–726

Benlamri M, Bothe KM, Ma AM, Shoute G, Afshar A, Sharma H, Mohammadpour A, Gupta M, Cadien KC, Tsui YY, Shankar K, Barlage DW (2014) High-mobility solution-processed zinc oxide thin films on silicon nitride. Phys Status Solidi RRL 8:871–875

Galstyan V, Comini E, Ponzoni A, Sberveglieri V, Sberveglieri G (2016) ZnO quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric. Chem Sens 4:6–27

Ayouchi R, Leinen D, Martin F, Gabas M, Dalchiele E, Ramos-Barrado JR (2003) Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis. Thin Solid Films 426:68–77

Rahmane S, Aida MS, Chala A, Temam HB, Djouadi MA (2007) Elaboration of transparent undoped ZnO and Al-doped ZnO thin films by spray pyrolysis and their properties. Plasma Process Polym 4:356–358

Zhu G, Zhou Y, Wang S, Yang R, Ding Y, Wang X, Bando Y, Wang ZL (2012) Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 23:055604–055610

Hossein A, Kar P, Farsinezhad S, Sharma H, Shankar K (2015) Effect of sol stabilizer on the structure and electronic properties of solution-processed ZnO thin films. RSC Adv 5:87007–87018

Majumder SB, Jain M, Dobal PS, Katiyar RS (2003) Investigations on solution derived aluminium doped zinc oxide thin films. Mater Sci Eng 103:16–25

Gao XD, Peng F, Li XM, Yu WD, Qiu JJ (2007) Growth of highly oriented ZnO films by the two-step electrodeposition technique. J Mater Sci 42:9638–9644

Dalchiele EA, Giorgi P, Marotti RE, Martín F, Ramos-Barrado JR, Ayouci R, Leinen D (2001) Electrodeposition of ZnO Thin Films on n-Si (100). Sol Energy Mater Sol Cells 70:245–254

Craciun V, Elders J, Gardeniev JGE, Boyd IW (1994) Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl Phys Lett 65:2963–2965

Bang KH, Hwang DK, Myoung JM (2003) Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by radio-frequency magnetron sputtering. Appl Surf Sci 207:359–364

Hayashi Y, Kondo K, Murai K, Moriga T, Nakabayashi I, Fukumoto H, Tominag K (2004) ZnO–SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets. Vacuum 74:607–611

Minami T, Nanto H, Takata S (1983) UV emission from sputtered zinc oxide thin films. Thin Solid Films 109:379–384

Gu CD, Li J, Lian JS, Zheng GQ (2007) Electrochemical synthesis and optical properties of ZnO thin film on In2O3: Sn (ITO)-coated glass. Appl Surf Sci 253:7011–7015

Korber C, Suffner J, Klein A (2010) Surface energy controlled preferential orientation of thin films. J Phys D Appl Phys 43:055301–055304

Dadgour HF, Endo K, De VK, Banerjee K (2010) Grain-orientation induced work function variation in nanoscale metal-gate transistors; part I: modeling, analysis, and experimental validation. IEEE Trans Electron Devices 57:2504–2514

Sadewasser S, Glatzel T, Schuler S, Nishiwaki S, Kaigawa R, Lux-Steiner MC (2003) Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices. Thin Solid Films 257:431–432

Boubenia S, Dahiya AS, Poulin-Vittrant G, Morini F, Nadaud K, Alquier DA (2017) Facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations. Sci Rep 7:15187–15196

Ghayour H, Rezaie HR, Mirdamadi S, Nourbakhsh AA (2011) The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 86:101–105

Bae YS, Kim DC, Ahn CH, Kim JH, Cho HK (2010) Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures. Surf Interface Anal 42:978–982

Donderis V, Hernández-Fenollosa MA, Damonte LC, Marí B, Cembrero J (2007) Enhancement of surface morphology and optical properties of nanocolumnar ZnO films. Superlattices Microstruct 42:461–467

Chichibu SF, Yoshida T, Onuma T, Nakanishi H (2002) Helicon-wave-excited-plasma sputtering epitaxy of ZnO on sapphire (0001) substrates. J Appl Phys 91:874–877

Bouderbala M, Hamzaoui S, Amrani B, Reshak AH, Adnane M, Sahraoui T, Zerdali M (2008) Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Phys B 403:3326–3330

Kishimoto S, Yamamoto T, Nakagawa Y, Ikeda K, Makino H, Yamada T (2006) Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition. Superlattices Microstruct 39:306–313

Suchea M, Christoulakis S, Katharakis M, Vidakis N, Koudoumas E (2009) Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films. Thin Solid Films 517:4303–4306

Mridha S, Basak D (2007) Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater Res Bull 42:875–882

Reyes Tolosa MD, Orozco-Messana J, Lima ANC, Camaratta R, Pascual M, Hernandez-Fenollosa MA (2011) Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J Electrochem Soc 158:107–110

Reyes Tolosa MD, Orozco-Messana J, Damonte LC, Hernandez-Fenollosa MA (2011) ZnO nanoestructured layers processing with morphology control by pulsed electrodeposition. J Electrochem Soc 158:452–455

Laukaitis G, Lindroos S, Tamulevicius S, Leskela M (2001) Stress and morphological development of CdS and ZnS thin films during the SILAR growth on (1 0 0) GaAs. Appl Surf Sci 185:134–139

Ludwig W, Ohm W, Correa-Hoyos JM, Zhao Y, Lux-Steiner MC, Gledhill S (2013) Electrodeposition parameters for ZnO nanorod arrays for photovoltaic applications. Phys Status Solidi A 210:1557–1563

Chopra KL, Das SR (1983) Thin film solar cells. Springer, New York

Ohm W, Riedel W, Askünger Ü, Heinemann MD, Kaufmann CA, Lopez Garcia J, Izquierdo V, Fontané X, Goislard T, Lux-Steiner MC, Gledhill S (2015) An overview of technological aspects of Cu(In, Ga)Se2 solar cell architectures incorporating ZnO nanorod arrays. Phys Status Solidi A 212:76–87

Wang Q, Wang G, Jie J, Han X, Xu B, Hou JG (2005) Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition described. Thin Solid Films 492:61–65

Tao Y, Fu M, Zhao A, He D, Wang Y (2010) The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. J Alloys Compd 489:99–102

El-Zahed H, El- Korashy A, Abdel Rahman M (2003) Effect of heat treatment on some of the optical parameters of Cu9Ge11Te80 films. Vacuum 68:19–27

Kumar M, Sasikumar C (2014) Electrodeposition of nanostructured ZnO thin film. Am J Mater Sci Eng 23:18–23

Wang J, Chen R, Xiang L, Komarneni S (2018) Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram Int 44:7357–7377

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem