- -

Sound Focusing Capability of a CO2 Gas-Filled Cuboid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sound Focusing Capability of a CO2 Gas-Filled Cuboid

Mostrar el registro completo del ítem

Tarrazó-Serrano, D.; Rubio Michavila, C.; Minin, OV.; Uris Martínez, A.; Minin, IV. (2020). Sound Focusing Capability of a CO2 Gas-Filled Cuboid. Physics of Wave Phenomena. 28(4):333-337. https://doi.org/10.3103/S1541308X2004010X

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162364

Ficheros en el ítem

Metadatos del ítem

Título: Sound Focusing Capability of a CO2 Gas-Filled Cuboid
Autor: Tarrazó-Serrano, Daniel Rubio Michavila, Constanza Minin, O. V. Uris Martínez, Antonio Minin, I. V.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] The ability of focus waves with concave or convex surfaces is well known both in optics and in acoustics. Nowadays, the possibility of beamforming sound with flat lenses is a hot topic because of its application in ...[+]
Palabras clave: Acoustic waves , Beamforming , Flat lenses , Cuboid lens , Physic phenomenon
Derechos de uso: Reserva de todos los derechos
Fuente:
Physics of Wave Phenomena. (issn: 1541-308X )
DOI: 10.3103/S1541308X2004010X
Editorial:
Springer
Versión del editor: https://doi.org/10.3103/S1541308X2004010X
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2015-70939-R/ES/ESTRUCTURAS SUBWAVELENGTH PARA LA FOCALIZACION DE ULTRASONIDOS DE ALTA INTENSIDAD/
info:eu-repo/grantAgreement/AEI//BES-2016-077133/
Agradecimientos:
This work was financially supported by the Spanish MINECO through project TEC2015-70939-R and partially was carried out within the framework of the Tomsk Polytechnic University Competitiveness Enhancement Program, Russia. ...[+]
Tipo: Artículo

References

E. Atkinson, Elementary Treatise on Physics, Experimental and Applied, 11th ed. (New York, 1882), p. 237.

J. M. Kendall, “Acoustic lens is gas-filled,” NASA Tech. Briefs. 5, 345–346 (1980).

D. C. Thomas, K. L. Gee, and R. S. Turley, “A balloon lens: Acoustic scattering from a penetrable sphere,” Am. J. Phys. 77 (3), 197–203 (2009). https://doi.org/10.1119/1.3041420 [+]
E. Atkinson, Elementary Treatise on Physics, Experimental and Applied, 11th ed. (New York, 1882), p. 237.

J. M. Kendall, “Acoustic lens is gas-filled,” NASA Tech. Briefs. 5, 345–346 (1980).

D. C. Thomas, K. L. Gee, and R. S. Turley, “A balloon lens: Acoustic scattering from a penetrable sphere,” Am. J. Phys. 77 (3), 197–203 (2009). https://doi.org/10.1119/1.3041420

The Unesco Source Book for Science Teaching (Oxford, New Delhi, 1973).

D. C. Calvo, A. L. Thangawng, M. Nicholas, and C. N. Layman, “Thin Fresnel zone plate lenses for focusing underwater sound,” Appl. Phys. Lett. 107 (1), 014013 (2015). https://doi.org/10.1063/1.4926607

F. Cervera, J.V. Sánchez-Pérez, R. Martínez-Sala, C. Rubio, F. Meseguer, C. López, D. Caballero and J. Sánchez-Dehesa, “Refractive acoustic device for airborne sound,” Phys. Rev. Lett. 88 (2), 023902 (2001). https:/doi.org/https://doi.org/10.1103/PhysRevLett.88.023902

A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y. Pennec, P. A. Deymier, and J. H. Page, “Experimental and theoretical evidence for subwavelength imaging in phononic crystals,” Phys. Rev. Lett. 102 (15), 154301 (2009). https://doi.org/10.1103/PhysRevLett.102.154301

P. Peng, B. Xiao, and Y. Wu, “Flat acoustic lens by acoustic grating with curled slits,” Phys. Lett. A. 378 (45), 3389–3392 (2014). https://doi.org/10.1016/j.physleta.2014.09.042

K. Tang, C. Qiu, M. Ke, J. Lu, Y. Ye, and Z. Liu, “Anomalous refraction of airborne sound through ultrathin metasurfaces,” Sci. Rep. 4, 6517 (2015). https://doi.org/10.1038/srep06517

Y. Li, B. Liang, X. Tao, X.-F. Zhu, X.-Y. Zou, and J.-C. Cheng, “Acoustic focusing by coiling up space,” Appl. Phys. Lett. 101 (23), 233508 (2012). https://doi.org/10.1063/1.4769984

Y. Li, B. Liang, Z.-M. Gun, X.-Y. Zou, and J.-C. Cheng, “Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces,” Sci. Rep. 3, 2546 (2013). https://doi.org/10.1038/srep02546

M. Molerón, M. Serra-Garcia, and C. Daraio, “Acoustic Fresnel lenses with extraordinary transmission,” Appl. Phys. Lett. 105 (11), 114109 (2014). https://doi.org/10.1063/1.4896276

Z. Lin, X. Guo, J. Tu, J. Cheng, J. Wu, and D. Zhang, “Acoustic focusing of sub-wavelength scale achieved by multiple Fabry–Perot resonance effect,” J. Appl. Phys. 115 (10), 104504 (2014). https://doi.org/10.1063/1.4868629

R. A. Jahdali and Y. Wu, “High transmission acoustic focusing by impedance-matched acoustic meta-surfaces,” Appl. Phys. Lett. 108 (3), 031902 (2016). https://doi.org/10.1063/1.4939932

C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I.V. Minin, “Wavelength-scale gas-filled cuboid acoustic lens with diffraction limited focusing,” Results Phys. 12, 1905–1908 (2019). https://doi.org/10.1016/j.rinp.2019.02.011

C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I. V. Minin, “Sound focusing of a wavelength-scale gas-filled flat lens,” Europhys. Lett. 123 (6), 64002 (2018). https://doi.org/10.1209/0295-5075/123/64002

C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I. V. Minin, “Enhancement of pupil-masked wavelength-scale gas-filled flat acoustic lens based on anomaly apodization effect,” Phys. Lett. A. 383 (5), 396–399 (2019). https://doi.org/10.1016/j.physleta.2018.11.014

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th ed. (Wiley-VCH, 1999).

J. H. Wu, A. Q. Liu, and H. L. Chen, “Exact solutions for free-vibration analysis of rectangular plates using Bessel functions,” J. Appl. Mech. 74 (6), 1247–1251 (2007). https://doi.org/10.1115/1.2744043

S. Mohamady, R. K. R. Ahmad, A. Montazeri, R. Zahari, and N. A. A. Jalil, “Modeling and eigenfrequency analysis of sound-structure interaction in a rectangular enclosure with finite element method,” Adv. Acoust. Vib. 2009, 371297 (2009). https://doi.org/10.1155/2009/371297

A. W. Leissa, “The free vibration of rectangular plates,” J. Sound Vib. 31 (3), 257–293 (1973). https://doi.org/10.1016/S0022-460X(73)80371-2

C. L. M. H. Navier, “Extrait des recherches sur la flexion des plans elastiques,” Bull. Sci. Soc. Philomarhique de Paris. 5, 95–102 (1823).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem