Mostrar el registro sencillo del ítem
dc.contributor.author | Tarrazó-Serrano, Daniel | es_ES |
dc.contributor.author | Rubio Michavila, Constanza | es_ES |
dc.contributor.author | Minin, O. V. | es_ES |
dc.contributor.author | Uris Martínez, Antonio | es_ES |
dc.contributor.author | Minin, I. V. | es_ES |
dc.date.accessioned | 2021-02-25T04:49:21Z | |
dc.date.available | 2021-02-25T04:49:21Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1541-308X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162364 | |
dc.description.abstract | [EN] The ability of focus waves with concave or convex surfaces is well known both in optics and in acoustics. Nowadays, the possibility of beamforming sound with flat lenses is a hot topic because of its application in different areas such as biomedical engineering or non-destructive techniques. In this paper, we propose a gas filled cuboid lens that has a different sound speed than that of the surrounding medium (air in our case) as a beamforming acoustic device. This constitutes an experimental visualization of the capability of sound focusing with flat surfaces lens and allows understanding the corresponding physic phenomenon. | es_ES |
dc.description.sponsorship | This work was financially supported by the Spanish MINECO through project TEC2015-70939-R and partially was carried out within the framework of the Tomsk Polytechnic University Competitiveness Enhancement Program, Russia. D.T.-S. acknowledges financial support from Ministerio de Ciencia, Innovacion y Universidades de Espana through grant BES-2016-077133. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Physics of Wave Phenomena | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acoustic waves | es_ES |
dc.subject | Beamforming | es_ES |
dc.subject | Flat lenses | es_ES |
dc.subject | Cuboid lens | es_ES |
dc.subject | Physic phenomenon | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Sound Focusing Capability of a CO2 Gas-Filled Cuboid | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3103/S1541308X2004010X | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-70939-R/ES/ESTRUCTURAS SUBWAVELENGTH PARA LA FOCALIZACION DE ULTRASONIDOS DE ALTA INTENSIDAD/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2016-077133/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Tarrazó-Serrano, D.; Rubio Michavila, C.; Minin, OV.; Uris Martínez, A.; Minin, IV. (2020). Sound Focusing Capability of a CO2 Gas-Filled Cuboid. Physics of Wave Phenomena. 28(4):333-337. https://doi.org/10.3103/S1541308X2004010X | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3103/S1541308X2004010X | es_ES |
dc.description.upvformatpinicio | 333 | es_ES |
dc.description.upvformatpfin | 337 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 28 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\425696 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | E. Atkinson, Elementary Treatise on Physics, Experimental and Applied, 11th ed. (New York, 1882), p. 237. | es_ES |
dc.description.references | J. M. Kendall, “Acoustic lens is gas-filled,” NASA Tech. Briefs. 5, 345–346 (1980). | es_ES |
dc.description.references | D. C. Thomas, K. L. Gee, and R. S. Turley, “A balloon lens: Acoustic scattering from a penetrable sphere,” Am. J. Phys. 77 (3), 197–203 (2009). https://doi.org/10.1119/1.3041420 | es_ES |
dc.description.references | The Unesco Source Book for Science Teaching (Oxford, New Delhi, 1973). | es_ES |
dc.description.references | D. C. Calvo, A. L. Thangawng, M. Nicholas, and C. N. Layman, “Thin Fresnel zone plate lenses for focusing underwater sound,” Appl. Phys. Lett. 107 (1), 014013 (2015). https://doi.org/10.1063/1.4926607 | es_ES |
dc.description.references | F. Cervera, J.V. Sánchez-Pérez, R. Martínez-Sala, C. Rubio, F. Meseguer, C. López, D. Caballero and J. Sánchez-Dehesa, “Refractive acoustic device for airborne sound,” Phys. Rev. Lett. 88 (2), 023902 (2001). https:/doi.org/https://doi.org/10.1103/PhysRevLett.88.023902 | es_ES |
dc.description.references | A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y. Pennec, P. A. Deymier, and J. H. Page, “Experimental and theoretical evidence for subwavelength imaging in phononic crystals,” Phys. Rev. Lett. 102 (15), 154301 (2009). https://doi.org/10.1103/PhysRevLett.102.154301 | es_ES |
dc.description.references | P. Peng, B. Xiao, and Y. Wu, “Flat acoustic lens by acoustic grating with curled slits,” Phys. Lett. A. 378 (45), 3389–3392 (2014). https://doi.org/10.1016/j.physleta.2014.09.042 | es_ES |
dc.description.references | K. Tang, C. Qiu, M. Ke, J. Lu, Y. Ye, and Z. Liu, “Anomalous refraction of airborne sound through ultrathin metasurfaces,” Sci. Rep. 4, 6517 (2015). https://doi.org/10.1038/srep06517 | es_ES |
dc.description.references | Y. Li, B. Liang, X. Tao, X.-F. Zhu, X.-Y. Zou, and J.-C. Cheng, “Acoustic focusing by coiling up space,” Appl. Phys. Lett. 101 (23), 233508 (2012). https://doi.org/10.1063/1.4769984 | es_ES |
dc.description.references | Y. Li, B. Liang, Z.-M. Gun, X.-Y. Zou, and J.-C. Cheng, “Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces,” Sci. Rep. 3, 2546 (2013). https://doi.org/10.1038/srep02546 | es_ES |
dc.description.references | M. Molerón, M. Serra-Garcia, and C. Daraio, “Acoustic Fresnel lenses with extraordinary transmission,” Appl. Phys. Lett. 105 (11), 114109 (2014). https://doi.org/10.1063/1.4896276 | es_ES |
dc.description.references | Z. Lin, X. Guo, J. Tu, J. Cheng, J. Wu, and D. Zhang, “Acoustic focusing of sub-wavelength scale achieved by multiple Fabry–Perot resonance effect,” J. Appl. Phys. 115 (10), 104504 (2014). https://doi.org/10.1063/1.4868629 | es_ES |
dc.description.references | R. A. Jahdali and Y. Wu, “High transmission acoustic focusing by impedance-matched acoustic meta-surfaces,” Appl. Phys. Lett. 108 (3), 031902 (2016). https://doi.org/10.1063/1.4939932 | es_ES |
dc.description.references | C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I.V. Minin, “Wavelength-scale gas-filled cuboid acoustic lens with diffraction limited focusing,” Results Phys. 12, 1905–1908 (2019). https://doi.org/10.1016/j.rinp.2019.02.011 | es_ES |
dc.description.references | C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I. V. Minin, “Sound focusing of a wavelength-scale gas-filled flat lens,” Europhys. Lett. 123 (6), 64002 (2018). https://doi.org/10.1209/0295-5075/123/64002 | es_ES |
dc.description.references | C. Rubio, D. Tarrazó-Serrano, O. V. Minin, A. Uris, and I. V. Minin, “Enhancement of pupil-masked wavelength-scale gas-filled flat acoustic lens based on anomaly apodization effect,” Phys. Lett. A. 383 (5), 396–399 (2019). https://doi.org/10.1016/j.physleta.2018.11.014 | es_ES |
dc.description.references | L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, 4th ed. (Wiley-VCH, 1999). | es_ES |
dc.description.references | J. H. Wu, A. Q. Liu, and H. L. Chen, “Exact solutions for free-vibration analysis of rectangular plates using Bessel functions,” J. Appl. Mech. 74 (6), 1247–1251 (2007). https://doi.org/10.1115/1.2744043 | es_ES |
dc.description.references | S. Mohamady, R. K. R. Ahmad, A. Montazeri, R. Zahari, and N. A. A. Jalil, “Modeling and eigenfrequency analysis of sound-structure interaction in a rectangular enclosure with finite element method,” Adv. Acoust. Vib. 2009, 371297 (2009). https://doi.org/10.1155/2009/371297 | es_ES |
dc.description.references | A. W. Leissa, “The free vibration of rectangular plates,” J. Sound Vib. 31 (3), 257–293 (1973). https://doi.org/10.1016/S0022-460X(73)80371-2 | es_ES |
dc.description.references | C. L. M. H. Navier, “Extrait des recherches sur la flexion des plans elastiques,” Bull. Sci. Soc. Philomarhique de Paris. 5, 95–102 (1823). | es_ES |