- -

Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery

Show full item record

Poyatos-Racionero, E.; González-Álvarez, I.; González-Álvarez, M.; Martínez-Máñez, R.; Marcos Martínez, MD.; Bernardos Bau, A.; Aznar, E. (2020). Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery. Nanomaterials. 10(7):1-18. https://doi.org/10.3390/nano10071290

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162365

Files in this item

Item Metadata

Title: Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery
Author: Poyatos-Racionero, Elisa González-Álvarez, Isabel González-Álvarez, Marta Martínez-Máñez, Ramón Marcos Martínez, María Dolores Bernardos Bau, Andrea Aznar, Elena
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] In recent decades, the versatility of mesoporous silica particles and their relevance to develop controlled release systems have been demonstrated. Within them, gated materials able to modulate payload delivery represent ...[+]
Subjects: Mesoporous silica , Oleic acid , Molecular gate , MCM-41 , MCM-48 , SBA-15 , UVM-7 , Controlled release , Kinetic modelling , Gastrointestinal delivery
Copyrigths: Reconocimiento (by)
Source:
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano10071290
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/nano10071290
Project ID:
GENERALITAT VALENCIANA/ACIF/2016/023
GENERALITAT VALENCIANA/PROMETEO/2018/024
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
Thanks:
This research was funded by the Spanish Government (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22-AR (MCUI/FEDER, EU)) and the Generalitat Valenciana (project PROMETEO/2018/024 and ACIF/2016/023 grant).
Type: Artículo

References

Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Llorca, E., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Stability of different mesoporous silica particles during an in vitro digestion. Microporous and Mesoporous Materials, 230, 196-207. doi:10.1016/j.micromeso.2016.05.004

Di Pasqua, A. J., Sharma, K. K., Shi, Y.-L., Toms, B. B., Ouellette, W., Dabrowiak, J. C., & Asefa, T. (2008). Cytotoxicity of mesoporous silica nanomaterials. Journal of Inorganic Biochemistry, 102(7), 1416-1423. doi:10.1016/j.jinorgbio.2007.12.028

Izquierdo-Barba, I., Colilla, M., Manzano, M., & Vallet-Regí, M. (2010). In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials, 132(3), 442-452. doi:10.1016/j.micromeso.2010.03.025 [+]
Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Llorca, E., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Stability of different mesoporous silica particles during an in vitro digestion. Microporous and Mesoporous Materials, 230, 196-207. doi:10.1016/j.micromeso.2016.05.004

Di Pasqua, A. J., Sharma, K. K., Shi, Y.-L., Toms, B. B., Ouellette, W., Dabrowiak, J. C., & Asefa, T. (2008). Cytotoxicity of mesoporous silica nanomaterials. Journal of Inorganic Biochemistry, 102(7), 1416-1423. doi:10.1016/j.jinorgbio.2007.12.028

Izquierdo-Barba, I., Colilla, M., Manzano, M., & Vallet-Regí, M. (2010). In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials, 132(3), 442-452. doi:10.1016/j.micromeso.2010.03.025

Arruebo, M. (2011). Drug delivery from structured porous inorganic materials. WIREs Nanomedicine and Nanobiotechnology, 4(1), 16-30. doi:10.1002/wnan.132

Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition, 46(40), 7548-7558. doi:10.1002/anie.200604488

Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734

Shang, L., Bian, T., Zhang, B., Zhang, D., Wu, L.-Z., Tung, C.-H., … Zhang, T. (2013). Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie International Edition, 53(1), 250-254. doi:10.1002/anie.201306863

Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030

Bernardos, A., Marina, T., Žáček, P., Pérez-Esteve, É., Martínez-Mañez, R., Lhotka, M., … Klouček, P. (2014). Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95(14), 2824-2831. doi:10.1002/jsfa.7022

Barat, J., Pérez-Esteve, É., Bernardos, A., & Martínez-Mañez, R. (2011). Nutritional effects of folic acid controlled release from mesoporous materials. Procedia Food Science, 1, 1828-1832. doi:10.1016/j.profoo.2011.09.268

Ruiz-Rico, M., Daubenschüz, H., Pérez-Esteve, É., Marcos, M. D., Amorós, P., Martínez-Máñez, R., & Barat, J. M. (2016). Protective effect of mesoporous silica particles on encapsulated folates. European Journal of Pharmaceutics and Biopharmaceutics, 105, 9-17. doi:10.1016/j.ejpb.2016.05.016

Mas, N., Arcos, D., Polo, L., Aznar, E., Sánchez-Salcedo, S., Sancenón, F., … Martínez-Máñez, R. (2014). Towards the Development of Smart 3D «Gated Scaffolds» for On-Command Delivery. Small, 10(23), 4859-4864. doi:10.1002/smll.201401227

Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., & Martínez‐Máñez, R. (2019). Mesoporous Silica‐Based Materials with Bactericidal Properties. Small, 15(24), 1900669. doi:10.1002/smll.201900669

Santos-Figueroa, L. E., Giménez, C., Agostini, A., Aznar, E., Marcos, M. D., Sancenón, F., … Amorós, P. (2013). Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles. Angewandte Chemie International Edition, 52(51), 13712-13716. doi:10.1002/anie.201306688

Poyatos-Racionero, E., Ros-Lis, J. V., Vivancos, J.-L., & Martínez-Máñez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, 172, 3398-3409. doi:10.1016/j.jclepro.2017.11.075

Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d

Perez-Esteve, E., Bernardos, A., Martinez-Manez, R., & M. Barat, J. (2013). Nanotechnology in the Development of Novel Functional Foods or their Package. An Overview Based in Patent Analysis. Recent Patents on Food, Nutrition & Agriculture, 5(1), 35-43. doi:10.2174/2212798411305010006

Lamprecht, A., Schäfer, U., & Lehr, C. (2001). Pharmaceutical Research, 18(6), 788-793. doi:10.1023/a:1011032328064

Awaad, A., Nakamura, M., & Ishimura, K. (2012). Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomedicine: Nanotechnology, Biology and Medicine, 8(5), 627-636. doi:10.1016/j.nano.2011.08.009

Hussain, N. (2001). Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Advanced Drug Delivery Reviews, 50(1-2), 107-142. doi:10.1016/s0169-409x(01)00152-1

Fu, C., Liu, T., Li, L., Liu, H., Chen, D., & Tang, F. (2013). The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials, 34(10), 2565-2575. doi:10.1016/j.biomaterials.2012.12.043

ALOthman, Z. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874-2902. doi:10.3390/ma5122874

Asefa, T., & Tao, Z. (2012). Mesoporous silica and organosilica materials — Review of their synthesis and organic functionalization. Canadian Journal of Chemistry, 90(12), 1015-1031. doi:10.1139/v2012-094

Li, Y., Li, N., Pan, W., Yu, Z., Yang, L., & Tang, B. (2017). Hollow Mesoporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery. ACS Applied Materials & Interfaces, 9(3), 2123-2129. doi:10.1021/acsami.6b13876

Legnoverde, M. S., & Basaldella, E. I. (2016). Influence of particle size on the adsorption and release of cephalexin encapsulated in mesoporous silica SBA-15. Materials Letters, 181, 331-334. doi:10.1016/j.matlet.2016.06.053

Popova, M., Szegedi, A., Mavrodinova, V., Novak Tušar, N., Mihály, J., Klébert, S., … Yoncheva, K. (2014). Preparation of resveratrol-loaded nanoporous silica materials with different structures. Journal of Solid State Chemistry, 219, 37-42. doi:10.1016/j.jssc.2014.07.002

Martín, A., Morales, V., Ortiz-Bustos, J., Pérez-Garnes, M., Bautista, L. F., García-Muñoz, R. A., & Sanz, R. (2018). Modelling the adsorption and controlled release of drugs from the pure and amino surface-functionalized mesoporous silica hosts. Microporous and Mesoporous Materials, 262, 23-34. doi:10.1016/j.micromeso.2017.11.009

Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017

Silveira, G. Q., da Silva, R. S., Franco, L. P., Vargas, M. D., & Ronconi, C. M. (2015). Redox-responsive nanoreservoirs: The effect of different types of mesoporous silica on the controlled release of doxorubicin in solution and in vitro. Microporous and Mesoporous Materials, 206, 226-233. doi:10.1016/j.micromeso.2014.12.026

Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials, 117(1-2), 1-9. doi:10.1016/j.micromeso.2008.07.002

Lu, P.-J. (2010). Gastric juice acidity in upper gastrointestinal diseases. World Journal of Gastroenterology, 16(43), 5496. doi:10.3748/wjg.v16.i43.5496

ULKER, İ., & YILDIRAN, H. (2019). The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Bioscience of Microbiota, Food and Health, 38(1), 3-9. doi:10.12938/bmfh.18-018

Sardo, P., & Walker, J. H. (2008). Bariatric Surgery: Impact on Medication Management. Hospital Pharmacy, 43(2), 113-120. doi:10.1310/hpj4302-113

Geraldo, M., Feder, D., Affonso Fonseca, F. L., & de Fatima Veiga Gouveia, M. R. (2014). The use of drugs in patients who have undergone bariatric surgery. International Journal of General Medicine, 219. doi:10.2147/ijgm.s55332

Kurlan, R., Nutt, J. G., Woodward, W. R., Rothfield, K., Lichter, D., Miller, C., … Shoulson, I. (1988). Duodenal and gastric delivery of levodopa in parkinsonism. Annals of Neurology, 23(6), 589-595. doi:10.1002/ana.410230611

Bredberg, E., Nilsson, D., Johansson, K., Aquilonius, S. M., Johnels, B., Nystr�m, C., & Paalzow, L. (1993). Intraduodenal infusion of a water-based levodopa dispersion for optimisation of the therapeutic effect in severe Parkinson’s disease. European Journal of Clinical Pharmacology, 45(2), 117-122. doi:10.1007/bf00315491

Antonini, A., & Odin, P. (2009). Pros and cons of apomorphine and l-dopa continuous infusion in advanced Parkinson’s disease. Parkinsonism & Related Disorders, 15, S97-S100. doi:10.1016/s1353-8020(09)70844-2

Santos García, D., de Deus Fonticoba, T., López Pazos, E., Macías Arribi, M., Llaneza González, M. A., Echarri Piudo, A., … de la Fuente Fernández, R. (2014). Manejo de las complicaciones relacionadas con la infusión intraduodenal de levodopa/carbidopa en pacientes con enfermedad de Parkinson. Revista de Neurología, 58(11), 505. doi:10.33588/rn.5811.2014067

Poyatos‐Racionero, E., Pérez‐Esteve, É., Dolores Marcos, M., Barat, J. M., Martínez‐Máñez, R., Aznar, E., & Bernardos, A. (2019). New Oleic Acid‐Capped Mesoporous Silica Particles as Surfactant‐Responsive Delivery Systems. ChemistryOpen, 8(8), 1052-1056. doi:10.1002/open.201900092

Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7

Meléndez-Ortiz, H. I., Perera-Mercado, Y. A., García-Cerda, L. A., Mercado-Silva, J. A., & Castruita, G. (2014). Influence of the reaction conditions on the thermal stability of mesoporous MCM-48 silica obtained at room temperature. Ceramics International, 40(3), 4155-4161. doi:10.1016/j.ceramint.2013.08.072

Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 279(5350), 548-552. doi:10.1126/science.279.5350.548

El Haskouri, J., Zárate, D. O. de, Guillem, C., Latorre, J., Caldés, M., Beltrán, A., … Amorós, P. (2002). Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, (4), 330-331. doi:10.1039/b110883b

Versantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31-40. doi:10.1016/j.fct.2004.08.007

Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5(1), 23-36. doi:10.1016/0168-3659(87)90034-4

Huang, X., & Brazel, C. S. (2001). On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, 73(2-3), 121-136. doi:10.1016/s0168-3659(01)00248-6

Choi, S.-J., & Kim, Y.-R. (2013). Bioinspired Layered Nanoclays for Nutraceutical Delivery System. Advances in Applied Nanotechnology for Agriculture, 207-220. doi:10.1021/bk-2013-1143.ch012

Sgouras, D., & Duncan, R. (1990). Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1 ? Use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation ofin vitro cytotoxicity. Journal of Materials Science: Materials in Medicine, 1(2), 61-68. doi:10.1007/bf00839070

Yazdimamaghani, M., Barber, Z. B., Hadipour Moghaddam, S. P., & Ghandehari, H. (2018). Influence of Silica Nanoparticle Density and Flow Conditions on Sedimentation, Cell Uptake, and Cytotoxicity. Molecular Pharmaceutics, 15(6), 2372-2383. doi:10.1021/acs.molpharmaceut.8b00213

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record