- -

Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Poyatos-Racionero, Elisa es_ES
dc.contributor.author González-Álvarez, Isabel es_ES
dc.contributor.author González-Álvarez, Marta es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Bernardos Bau, Andrea es_ES
dc.contributor.author Aznar, Elena es_ES
dc.date.accessioned 2021-02-25T04:49:24Z
dc.date.available 2021-02-25T04:49:24Z
dc.date.issued 2020-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162365
dc.description.abstract [EN] In recent decades, the versatility of mesoporous silica particles and their relevance to develop controlled release systems have been demonstrated. Within them, gated materials able to modulate payload delivery represent great advantages. However, the role played by the porous matrix in this kind of systems is scarce. In this work, different mesoporous silica materials (MCM-41, MCM-48, SBA-15 and UVM-7) are functionalized with oleic acid as a molecular gate. All systems are fully characterized and their ability to confine the entrapped cargo and release it in the presence of bile salts is validated with release assays and in vitro digestion experiments. The cargo release profile of each synthesized support is studied, paying attention to the inorganic scaffold. Obtained release profiles fit to Korsmeyer-Peppas model, which explains the differences among the studied supports. Based on the results, UVM-7 material was the most appropriate system for duodenal delivery and was tested in an in vivo model of the Wistar rat. Payload confinement and its complete release after gastric emptying is achieved, establishing the possible use of mesoporous silica particles as protection and direct release agents into the duodenum and, hence, demonstrating that these systems could serve as an alternative to the administration methods employed until now. es_ES
dc.description.sponsorship This research was funded by the Spanish Government (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22-AR (MCUI/FEDER, EU)) and the Generalitat Valenciana (project PROMETEO/2018/024 and ACIF/2016/023 grant). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mesoporous silica es_ES
dc.subject Oleic acid es_ES
dc.subject Molecular gate es_ES
dc.subject MCM-41 es_ES
dc.subject MCM-48 es_ES
dc.subject SBA-15 es_ES
dc.subject UVM-7 es_ES
dc.subject Controlled release es_ES
dc.subject Kinetic modelling es_ES
dc.subject Gastrointestinal delivery es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano10071290 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F023/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Poyatos-Racionero, E.; González-Álvarez, I.; González-Álvarez, M.; Martínez-Máñez, R.; Marcos Martínez, MD.; Bernardos Bau, A.; Aznar, E. (2020). Surfactant-Triggered Molecular Gate Tested on Different Mesoporous Silica Supports for Gastrointestinal Controlled Delivery. Nanomaterials. 10(7):1-18. https://doi.org/10.3390/nano10071290 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano10071290 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.identifier.pmid 32630076 es_ES
dc.identifier.pmcid PMC7407901 es_ES
dc.relation.pasarela S\414861 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Llorca, E., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Stability of different mesoporous silica particles during an in vitro digestion. Microporous and Mesoporous Materials, 230, 196-207. doi:10.1016/j.micromeso.2016.05.004 es_ES
dc.description.references Di Pasqua, A. J., Sharma, K. K., Shi, Y.-L., Toms, B. B., Ouellette, W., Dabrowiak, J. C., & Asefa, T. (2008). Cytotoxicity of mesoporous silica nanomaterials. Journal of Inorganic Biochemistry, 102(7), 1416-1423. doi:10.1016/j.jinorgbio.2007.12.028 es_ES
dc.description.references Izquierdo-Barba, I., Colilla, M., Manzano, M., & Vallet-Regí, M. (2010). In vitro stability of SBA-15 under physiological conditions. Microporous and Mesoporous Materials, 132(3), 442-452. doi:10.1016/j.micromeso.2010.03.025 es_ES
dc.description.references Arruebo, M. (2011). Drug delivery from structured porous inorganic materials. WIREs Nanomedicine and Nanobiotechnology, 4(1), 16-30. doi:10.1002/wnan.132 es_ES
dc.description.references Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition, 46(40), 7548-7558. doi:10.1002/anie.200604488 es_ES
dc.description.references Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734 es_ES
dc.description.references Shang, L., Bian, T., Zhang, B., Zhang, D., Wu, L.-Z., Tung, C.-H., … Zhang, T. (2013). Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie International Edition, 53(1), 250-254. doi:10.1002/anie.201306863 es_ES
dc.description.references Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77(1), 1-45. doi:10.1016/j.micromeso.2004.06.030 es_ES
dc.description.references Bernardos, A., Marina, T., Žáček, P., Pérez-Esteve, É., Martínez-Mañez, R., Lhotka, M., … Klouček, P. (2014). Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. Journal of the Science of Food and Agriculture, 95(14), 2824-2831. doi:10.1002/jsfa.7022 es_ES
dc.description.references Barat, J., Pérez-Esteve, É., Bernardos, A., & Martínez-Mañez, R. (2011). Nutritional effects of folic acid controlled release from mesoporous materials. Procedia Food Science, 1, 1828-1832. doi:10.1016/j.profoo.2011.09.268 es_ES
dc.description.references Ruiz-Rico, M., Daubenschüz, H., Pérez-Esteve, É., Marcos, M. D., Amorós, P., Martínez-Máñez, R., & Barat, J. M. (2016). Protective effect of mesoporous silica particles on encapsulated folates. European Journal of Pharmaceutics and Biopharmaceutics, 105, 9-17. doi:10.1016/j.ejpb.2016.05.016 es_ES
dc.description.references Mas, N., Arcos, D., Polo, L., Aznar, E., Sánchez-Salcedo, S., Sancenón, F., … Martínez-Máñez, R. (2014). Towards the Development of Smart 3D «Gated Scaffolds» for On-Command Delivery. Small, 10(23), 4859-4864. doi:10.1002/smll.201401227 es_ES
dc.description.references Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., & Martínez‐Máñez, R. (2019). Mesoporous Silica‐Based Materials with Bactericidal Properties. Small, 15(24), 1900669. doi:10.1002/smll.201900669 es_ES
dc.description.references Santos-Figueroa, L. E., Giménez, C., Agostini, A., Aznar, E., Marcos, M. D., Sancenón, F., … Amorós, P. (2013). Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles. Angewandte Chemie International Edition, 52(51), 13712-13716. doi:10.1002/anie.201306688 es_ES
dc.description.references Poyatos-Racionero, E., Ros-Lis, J. V., Vivancos, J.-L., & Martínez-Máñez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, 172, 3398-3409. doi:10.1016/j.jclepro.2017.11.075 es_ES
dc.description.references Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d es_ES
dc.description.references Perez-Esteve, E., Bernardos, A., Martinez-Manez, R., & M. Barat, J. (2013). Nanotechnology in the Development of Novel Functional Foods or their Package. An Overview Based in Patent Analysis. Recent Patents on Food, Nutrition & Agriculture, 5(1), 35-43. doi:10.2174/2212798411305010006 es_ES
dc.description.references Lamprecht, A., Schäfer, U., & Lehr, C. (2001). Pharmaceutical Research, 18(6), 788-793. doi:10.1023/a:1011032328064 es_ES
dc.description.references Awaad, A., Nakamura, M., & Ishimura, K. (2012). Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomedicine: Nanotechnology, Biology and Medicine, 8(5), 627-636. doi:10.1016/j.nano.2011.08.009 es_ES
dc.description.references Hussain, N. (2001). Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Advanced Drug Delivery Reviews, 50(1-2), 107-142. doi:10.1016/s0169-409x(01)00152-1 es_ES
dc.description.references Fu, C., Liu, T., Li, L., Liu, H., Chen, D., & Tang, F. (2013). The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials, 34(10), 2565-2575. doi:10.1016/j.biomaterials.2012.12.043 es_ES
dc.description.references ALOthman, Z. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5(12), 2874-2902. doi:10.3390/ma5122874 es_ES
dc.description.references Asefa, T., & Tao, Z. (2012). Mesoporous silica and organosilica materials — Review of their synthesis and organic functionalization. Canadian Journal of Chemistry, 90(12), 1015-1031. doi:10.1139/v2012-094 es_ES
dc.description.references Li, Y., Li, N., Pan, W., Yu, Z., Yang, L., & Tang, B. (2017). Hollow Mesoporous Silica Nanoparticles with Tunable Structures for Controlled Drug Delivery. ACS Applied Materials & Interfaces, 9(3), 2123-2129. doi:10.1021/acsami.6b13876 es_ES
dc.description.references Legnoverde, M. S., & Basaldella, E. I. (2016). Influence of particle size on the adsorption and release of cephalexin encapsulated in mesoporous silica SBA-15. Materials Letters, 181, 331-334. doi:10.1016/j.matlet.2016.06.053 es_ES
dc.description.references Popova, M., Szegedi, A., Mavrodinova, V., Novak Tušar, N., Mihály, J., Klébert, S., … Yoncheva, K. (2014). Preparation of resveratrol-loaded nanoporous silica materials with different structures. Journal of Solid State Chemistry, 219, 37-42. doi:10.1016/j.jssc.2014.07.002 es_ES
dc.description.references Martín, A., Morales, V., Ortiz-Bustos, J., Pérez-Garnes, M., Bautista, L. F., García-Muñoz, R. A., & Sanz, R. (2018). Modelling the adsorption and controlled release of drugs from the pure and amino surface-functionalized mesoporous silica hosts. Microporous and Mesoporous Materials, 262, 23-34. doi:10.1016/j.micromeso.2017.11.009 es_ES
dc.description.references Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017 es_ES
dc.description.references Silveira, G. Q., da Silva, R. S., Franco, L. P., Vargas, M. D., & Ronconi, C. M. (2015). Redox-responsive nanoreservoirs: The effect of different types of mesoporous silica on the controlled release of doxorubicin in solution and in vitro. Microporous and Mesoporous Materials, 206, 226-233. doi:10.1016/j.micromeso.2014.12.026 es_ES
dc.description.references Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials, 117(1-2), 1-9. doi:10.1016/j.micromeso.2008.07.002 es_ES
dc.description.references Lu, P.-J. (2010). Gastric juice acidity in upper gastrointestinal diseases. World Journal of Gastroenterology, 16(43), 5496. doi:10.3748/wjg.v16.i43.5496 es_ES
dc.description.references ULKER, İ., & YILDIRAN, H. (2019). The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Bioscience of Microbiota, Food and Health, 38(1), 3-9. doi:10.12938/bmfh.18-018 es_ES
dc.description.references Sardo, P., & Walker, J. H. (2008). Bariatric Surgery: Impact on Medication Management. Hospital Pharmacy, 43(2), 113-120. doi:10.1310/hpj4302-113 es_ES
dc.description.references Geraldo, M., Feder, D., Affonso Fonseca, F. L., & de Fatima Veiga Gouveia, M. R. (2014). The use of drugs in patients who have undergone bariatric surgery. International Journal of General Medicine, 219. doi:10.2147/ijgm.s55332 es_ES
dc.description.references Kurlan, R., Nutt, J. G., Woodward, W. R., Rothfield, K., Lichter, D., Miller, C., … Shoulson, I. (1988). Duodenal and gastric delivery of levodopa in parkinsonism. Annals of Neurology, 23(6), 589-595. doi:10.1002/ana.410230611 es_ES
dc.description.references Bredberg, E., Nilsson, D., Johansson, K., Aquilonius, S. M., Johnels, B., Nystr�m, C., & Paalzow, L. (1993). Intraduodenal infusion of a water-based levodopa dispersion for optimisation of the therapeutic effect in severe Parkinson’s disease. European Journal of Clinical Pharmacology, 45(2), 117-122. doi:10.1007/bf00315491 es_ES
dc.description.references Antonini, A., & Odin, P. (2009). Pros and cons of apomorphine and l-dopa continuous infusion in advanced Parkinson’s disease. Parkinsonism & Related Disorders, 15, S97-S100. doi:10.1016/s1353-8020(09)70844-2 es_ES
dc.description.references Santos García, D., de Deus Fonticoba, T., López Pazos, E., Macías Arribi, M., Llaneza González, M. A., Echarri Piudo, A., … de la Fuente Fernández, R. (2014). Manejo de las complicaciones relacionadas con la infusión intraduodenal de levodopa/carbidopa en pacientes con enfermedad de Parkinson. Revista de Neurología, 58(11), 505. doi:10.33588/rn.5811.2014067 es_ES
dc.description.references Poyatos‐Racionero, E., Pérez‐Esteve, É., Dolores Marcos, M., Barat, J. M., Martínez‐Máñez, R., Aznar, E., & Bernardos, A. (2019). New Oleic Acid‐Capped Mesoporous Silica Particles as Surfactant‐Responsive Delivery Systems. ChemistryOpen, 8(8), 1052-1056. doi:10.1002/open.201900092 es_ES
dc.description.references Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7 es_ES
dc.description.references Meléndez-Ortiz, H. I., Perera-Mercado, Y. A., García-Cerda, L. A., Mercado-Silva, J. A., & Castruita, G. (2014). Influence of the reaction conditions on the thermal stability of mesoporous MCM-48 silica obtained at room temperature. Ceramics International, 40(3), 4155-4161. doi:10.1016/j.ceramint.2013.08.072 es_ES
dc.description.references Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., & Stucky, G. D. (1998). Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 279(5350), 548-552. doi:10.1126/science.279.5350.548 es_ES
dc.description.references El Haskouri, J., Zárate, D. O. de, Guillem, C., Latorre, J., Caldés, M., Beltrán, A., … Amorós, P. (2002). Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, (4), 330-331. doi:10.1039/b110883b es_ES
dc.description.references Versantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31-40. doi:10.1016/j.fct.2004.08.007 es_ES
dc.description.references Ritger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. Journal of Controlled Release, 5(1), 23-36. doi:10.1016/0168-3659(87)90034-4 es_ES
dc.description.references Huang, X., & Brazel, C. S. (2001). On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, 73(2-3), 121-136. doi:10.1016/s0168-3659(01)00248-6 es_ES
dc.description.references Choi, S.-J., & Kim, Y.-R. (2013). Bioinspired Layered Nanoclays for Nutraceutical Delivery System. Advances in Applied Nanotechnology for Agriculture, 207-220. doi:10.1021/bk-2013-1143.ch012 es_ES
dc.description.references Sgouras, D., & Duncan, R. (1990). Methods for the evaluation of biocompatibility of soluble synthetic polymers which have potential for biomedical use: 1 ? Use of the tetrazolium-based colorimetric assay (MTT) as a preliminary screen for evaluation ofin vitro cytotoxicity. Journal of Materials Science: Materials in Medicine, 1(2), 61-68. doi:10.1007/bf00839070 es_ES
dc.description.references Yazdimamaghani, M., Barber, Z. B., Hadipour Moghaddam, S. P., & Ghandehari, H. (2018). Influence of Silica Nanoparticle Density and Flow Conditions on Sedimentation, Cell Uptake, and Cytotoxicity. Molecular Pharmaceutics, 15(6), 2372-2383. doi:10.1021/acs.molpharmaceut.8b00213 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem