- -

Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome

Mostrar el registro completo del ítem

Sendra, L.; Miguel, A.; Navarro-Plaza, MC.; Herrero, MJ.; De La Higuera, J.; Cháfer-Pericás, C.; Aznar, E.... (2020). Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome. Nanomaterials. 10(6):1-16. https://doi.org/10.3390/nano10061183

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162367

Ficheros en el ítem

Metadatos del ítem

Título: Gold Nanoparticle-Assisted Virus Formation by Means of the Delivery of an Oncolytic Adenovirus Genome
Autor: Sendra, Luis Miguel, Antonio Navarro-Plaza, M. Carmen Herrero, María José de la Higuera, José Cháfer-Pericás, Consuelo Aznar, Elena Marcos Martínez, María Dolores Martínez-Máñez, Ramón Rojas, Luis Alfonso Alemany, Ramón Aliño, Salvador F.
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Oncolytic adenoviruses are a therapeutic alternative to treat cancer based on their ability to replicate selectively in tumor cells. However, their use is limited mainly by the neutralizing antibody (Nab) immune ...[+]
Palabras clave: Gold nanoparticles , Delivery , Gene therapy , Non-viral vectors , Oncolytic virus , Virotherapy , Cancer
Derechos de uso: Reconocimiento (by)
Fuente:
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano10061183
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/nano10061183
Agradecimientos:
This research was supported by University of Valencia 'Ayuda a la Investigacion', Asociacion Pablo Ugarte and European Regional Development Fund (VLC-CAMPUS).
Tipo: Artículo

References

Cebrián, V., Martín-Saavedra, F., Yagüe, C., Arruebo, M., Santamaría, J., & Vilaboa, N. (2011). Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomaterialia, 7(10), 3645-3655. doi:10.1016/j.actbio.2011.06.018

Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., & Sastry, M. (2005). Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir, 21(23), 10644-10654. doi:10.1021/la0513712

Niidome, T., Nakashima, K., Takahashi, H., & Niidome, Y. (2004). Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cellsElectronic Supplementary Information (ESI) available: A TEM image of the complex at a w/w ratio of 11. See http://www.rsc.org/suppdata/cc/b4/b406189f/. Chemical Communications, (17), 1978. doi:10.1039/b406189f [+]
Cebrián, V., Martín-Saavedra, F., Yagüe, C., Arruebo, M., Santamaría, J., & Vilaboa, N. (2011). Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomaterialia, 7(10), 3645-3655. doi:10.1016/j.actbio.2011.06.018

Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R. R., & Sastry, M. (2005). Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir, 21(23), 10644-10654. doi:10.1021/la0513712

Niidome, T., Nakashima, K., Takahashi, H., & Niidome, Y. (2004). Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cellsElectronic Supplementary Information (ESI) available: A TEM image of the complex at a w/w ratio of 11. See http://www.rsc.org/suppdata/cc/b4/b406189f/. Chemical Communications, (17), 1978. doi:10.1039/b406189f

Sandhu, K. K., McIntosh, C. M., Simard, J. M., Smith, S. W., & Rotello, V. M. (2001). Gold Nanoparticle-Mediated Transfection of Mammalian Cells. Bioconjugate Chemistry, 13(1), 3-6. doi:10.1021/bc015545c

Thomas, M., & Klibanov, A. M. (2003). Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences, 100(16), 9138-9143. doi:10.1073/pnas.1233634100

Noh, S. M., Kim, W.-K., Kim, S. J., Kim, J. M., Baek, K.-H., & Oh, Y.-K. (2007). Enhanced cellular delivery and transfection efficiency of plasmid DNA using positively charged biocompatible colloidal gold nanoparticles. Biochimica et Biophysica Acta (BBA) - General Subjects, 1770(5), 747-752. doi:10.1016/j.bbagen.2007.01.012

Chan, T. G., Morse, S. V., Copping, M. J., Choi, J. J., & Vilar, R. (2018). Targeted Delivery of DNA-Au Nanoparticles across the Blood-Brain Barrier Using Focused Ultrasound. ChemMedChem, 13(13), 1311-1314. doi:10.1002/cmdc.201800262

Mbatha, L. S., & Singh, M. (2019). Starburst Poly(amidoamine) Dendrimer Grafted Gold Nanoparticles as a Scaffold for Folic Acid-Targeted Plasmid DNA Delivery In Vitro. Journal of Nanoscience and Nanotechnology, 19(4), 1959-1970. doi:10.1166/jnn.2019.15798

Cobley, C. M., Chen, J., Cho, E. C., Wang, L. V., & Xia, Y. (2011). Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev., 40(1), 44-56. doi:10.1039/b821763g

Cho, E. C., Au, L., Zhang, Q., & Xia, Y. (2010). The Effects of Size, Shape, and Surface Functional Group of Gold Nanostructures on Their Adsorption and Internalization by Cells. Small, 6(4), 517-522. doi:10.1002/smll.200901622

Pissuwan, D., Niidome, T., & Cortie, M. B. (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of Controlled Release, 149(1), 65-71. doi:10.1016/j.jconrel.2009.12.006

Rosi, N. L., Giljohann, D. A., Thaxton, C. S., Lytton-Jean, A. K. R., Han, M. S., & Mirkin, C. A. (2006). Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science, 312(5776), 1027-1030. doi:10.1126/science.1125559

Ghosh, P. S., Kim, C.-K., Han, G., Forbes, N. S., & Rotello, V. M. (2008). Efficient Gene Delivery Vectors by Tuning the Surface Charge Density of Amino Acid-Functionalized Gold Nanoparticles. ACS Nano, 2(11), 2213-2218. doi:10.1021/nn800507t

Massich, M. D., Giljohann, D. A., Seferos, D. S., Ludlow, L. E., Horvath, C. M., & Mirkin, C. A. (2009). Regulating Immune Response Using Polyvalent Nucleic Acid−Gold Nanoparticle Conjugates. Molecular Pharmaceutics, 6(6), 1934-1940. doi:10.1021/mp900172m

Ryou, S.-M., Kim, S., Jang, H. H., Kim, J.-H., Yeom, J.-H., Eom, M. S., … Lee, K. (2010). Delivery of shRNA using gold nanoparticle–DNA oligonucleotide conjugates as a universal carrier. Biochemical and Biophysical Research Communications, 398(3), 542-546. doi:10.1016/j.bbrc.2010.06.115

Stobiecka, M., & Hepel, M. (2011). Double-shell gold nanoparticle-based DNA-carriers with poly-l-lysine binding surface. Biomaterials, 32(12), 3312-3321. doi:10.1016/j.biomaterials.2010.12.064

Sharma, A., Tandon, A., Tovey, J. C. K., Gupta, R., Robertson, J. D., Fortune, J. A., … Mohan, R. R. (2011). Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomedicine: Nanotechnology, Biology and Medicine, 7(4), 505-513. doi:10.1016/j.nano.2011.01.006

Yan, X., Blacklock, J., Li, J., & Möhwald, H. (2011). One-Pot Synthesis of Polypeptide–Gold Nanoconjugates for in Vitro Gene Transfection. ACS Nano, 6(1), 111-117. doi:10.1021/nn202939s

Shan, Y., Luo, T., Peng, C., Sheng, R., Cao, A., Cao, X., … Shi, X. (2012). Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials, 33(10), 3025-3035. doi:10.1016/j.biomaterials.2011.12.045

Trigueros, Domènech, Toulis, & Marfany. (2019). In Vitro Gene Delivery in Retinal Pigment Epithelium Cells by Plasmid DNA-Wrapped Gold Nanoparticles. Genes, 10(4), 289. doi:10.3390/genes10040289

Munsell, E. V., Fang, B., & Sullivan, M. O. (2018). Histone-Mimetic Gold Nanoparticles as Versatile Scaffolds for Gene Transfer and Chromatin Analysis. Bioconjugate Chemistry, 29(11), 3691-3704. doi:10.1021/acs.bioconjchem.8b00611

Dhanya, G. R., Caroline, D. S., Rekha, M. R., & Sreenivasan, K. (2018). Histidine and arginine conjugated starch-PEI and its corresponding gold nanoparticles for gene delivery. International Journal of Biological Macromolecules, 120, 999-1008. doi:10.1016/j.ijbiomac.2018.08.142

Hersey, P., & Gallagher, S. (2013). Intralesional immunotherapy for melanoma. Journal of Surgical Oncology, 109(4), 320-326. doi:10.1002/jso.23494

Mastrangelo, M. J., Maguire, H. C., Eisenlohr, L. C., Laughlin, C. E., Monken, C. E., McCue, P. A., … Lattime, E. C. (1999). Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Therapy, 6(5), 409-422. doi:10.1038/sj.cgt.7700066

Senzer, N. N., Kaufman, H. L., Amatruda, T., Nemunaitis, M., Reid, T., Daniels, G., … Nemunaitis, J. J. (2009). Phase II Clinical Trial of a Granulocyte-Macrophage Colony-Stimulating Factor–Encoding, Second-Generation Oncolytic Herpesvirus in Patients With Unresectable Metastatic Melanoma. Journal of Clinical Oncology, 27(34), 5763-5771. doi:10.1200/jco.2009.24.3675

Goins, W. F., Huang, S., Cohen, J. B., & Glorioso, J. C. (2014). Engineering HSV-1 Vectors for Gene Therapy. Herpes Simplex Virus, 63-79. doi:10.1007/978-1-4939-0428-0_5

Dummer, R., Rochlitz, C., Velu, T., Acres, B., Limacher, J.-M., Bleuzen, P., … Urosevic, M. (2008). Intralesional Adenovirus-mediated Interleukin-2 Gene Transfer for Advanced Solid Cancers and Melanoma. Molecular Therapy, 16(5), 985-994. doi:10.1038/mt.2008.32

GUPTA, P., SU, Z., LEBEDEVA, I., SARKAR, D., SAUANE, M., EMDAD, L., … DENT, P. (2006). mda-7/IL-24: Multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacology & Therapeutics, 111(3), 596-628. doi:10.1016/j.pharmthera.2005.11.005

Abbink, P., Lemckert, A. A. C., Ewald, B. A., Lynch, D. M., Denholtz, M., Smits, S., … Barouch, D. H. (2007). Comparative Seroprevalence and Immunogenicity of Six Rare Serotype Recombinant Adenovirus Vaccine Vectors from Subgroups B and D. Journal of Virology, 81(9), 4654-4663. doi:10.1128/jvi.02696-06

Mast, T. C., Kierstead, L., Gupta, S. B., Nikas, A. A., Kallas, E. G., Novitsky, V., … Shiver, J. W. (2010). International epidemiology of human pre-existing adenovirus (Ad) type-5, type-6, type-26 and type-36 neutralizing antibodies: Correlates of high Ad5 titers and implications for potential HIV vaccine trials. Vaccine, 28(4), 950-957. doi:10.1016/j.vaccine.2009.10.145

Barouch, D. H., Kik, S. V., Weverling, G. J., Dilan, R., King, S. L., Maxfield, L. F., … Goudsmit, J. (2011). International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine, 29(32), 5203-5209. doi:10.1016/j.vaccine.2011.05.025

Na, Y., Nam, J.-P., Hong, J., Oh, E., Shin, H. C., Kim, H. S., … Yun, C.-O. (2019). Systemic administration of human mesenchymal stromal cells infected with polymer-coated oncolytic adenovirus induces efficient pancreatic tumor homing and infiltration. Journal of Controlled Release, 305, 75-88. doi:10.1016/j.jconrel.2019.04.040

Kasala, D., Yoon, A.-R., Hong, J., Kim, S. W., & Yun, C.-O. (2016). Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine, 11(13), 1689-1713. doi:10.2217/nnm-2016-0060

Kwon, O.-J., Kang, E., Kim, S., & Yun, C.-O. (2011). Viral genome DNA/lipoplexes elicit in situ oncolytic viral replication and potent antitumor efficacy via systemic delivery. Journal of Controlled Release, 155(2), 317-325. doi:10.1016/j.jconrel.2011.06.014

YOSHIHARA, C., HAMADA, K., KURODA, M., & KOYAMA, Y. (2011). Oncolytic plasmid: A novel strategy for tumor immuno-gene therapy. Oncology Letters, 3(2), 387-390. doi:10.3892/ol.2011.467

Rojas, J. J., Guedan, S., Searle, P. F., Martinez-Quintanilla, J., Gil-Hoyos, R., Alcayaga-Miranda, F., … Alemany, R. (2010). Minimal RB-responsive E1A Promoter Modification to Attain Potency, Selectivity, and Transgene-arming Capacity in Oncolytic Adenoviruses. Molecular Therapy, 18(11), 1960-1971. doi:10.1038/mt.2010.173

Rincón, E., Cejalvo, T., Kanojia, D., Alfranca, A., Rodríguez-Milla, M. Á., Hoyos, R. A. G., … García-Castro, J. (2017). Mesenchymal stem cell carriers enhance antitumor efficacy of oncolytic adenoviruses in an immunocompetent mouse model. Oncotarget, 8(28), 45415-45431. doi:10.18632/oncotarget.17557

Carette, J. E., Graat, H. C. A., Schagen, F. H. E., Abou El Hassan, M. A. I., Gerritsen, W. R., & van Beusechem, V. W. (2005). Replication-dependent transgene expression from a conditionally replicating adenovirus via alternative splicing to a heterologous splice-acceptor site. The Journal of Gene Medicine, 7(8), 1053-1062. doi:10.1002/jgm.754

Stanton, R. J., McSharry, B. P., Armstrong, M., Tomasec, P., & Wilkinson, G. W. G. (2008). Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function. BioTechniques, 45(6), 659-668. doi:10.2144/000112993

Bayo-Puxan, N., Cascallo, M., Gros, A., Huch, M., Fillat, C., & Alemany, R. (2006). Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. Journal of General Virology, 87(9), 2487-2495. doi:10.1099/vir.0.81889-0

Brust, M., Fink, J., Bethell, D., Schiffrin, D. J., & Kiely, C. (1995). Synthesis and reactions of functionalised gold nanoparticles. Journal of the Chemical Society, Chemical Communications, (16), 1655. doi:10.1039/c39950001655

Guillem, V. M., Tormo, M., Revert, F., Benet, I., García-Conde, J., Crespo, A., & Aliño, S. F. (2002). Polyethyleneimine-based immunopolyplex for targeted gene transfer in human lymphoma celllines. The Journal of Gene Medicine, 4(2), 170-182. doi:10.1002/jgm.228

Stuchbury, T., Shipton, M., Norris, R., Malthouse, J. P. G., Brocklehurst, K., Herbert, J. A. L., & Suschitzky, H. (1975). A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochemical Journal, 151(2), 417-432. doi:10.1042/bj1510417

Moret, I., Esteban Peris, J., Guillem, V. M., Benet, M., Revert, F., Dası́, F., … Aliño, S. F. (2001). Stability of PEI–DNA and DOTAP–DNA complexes: effect of alkaline pH, heparin and serum. Journal of Controlled Release, 76(1-2), 169-181. doi:10.1016/s0168-3659(01)00415-1

Lisitsyna, E. S., Lygo, O. N., Durandin, N. A., Dement’eva, O. V., Rudoi, V. M., & Kuzmin, V. A. (2012). Superquenching of SYBRGreen dye fluorescence in complex with DNA by gold nanoparticles. High Energy Chemistry, 46(6), 363-367. doi:10.1134/s0018143912060057

Venkiteswaran, S., Thomas, T., & Thomas, T. J. (2016). Selectivity of polyethyleneimines on DNA nanoparticle preparation and gene transport. ChemistrySelect, 1(6), 1144-1150. doi:10.1002/slct.201600026

Taranejoo, S., Liu, J., Verma, P., & Hourigan, K. (2015). A review of the developments of characteristics of PEI derivatives for gene delivery applications. Journal of Applied Polymer Science, 132(25), n/a-n/a. doi:10.1002/app.42096

Del Papa, J., & Parks, R. (2017). Adenoviral Vectors Armed with Cell Fusion-Inducing Proteins as Anti-Cancer Agents. Viruses, 9(1), 13. doi:10.3390/v9010013

Kazemi Oskuee, R., Dabbaghi, M., Gholami, L., Taheri-Bojd, S., Balali-Mood, M., Mousavi, S. H., & Malaekeh-Nikouei, B. (2018). Investigating the influence of polyplex size on toxicity properties of polyethylenimine mediated gene delivery. Life Sciences, 197, 101-108. doi:10.1016/j.lfs.2018.02.008

Thomas, T. J., Tajmir-Riahi, H.-A., & Pillai, C. K. S. (2019). Biodegradable Polymers for Gene Delivery. Molecules, 24(20), 3744. doi:10.3390/molecules24203744

Miciak, J. J., Hirshberg, J., & Bunz, F. (2018). Seamless assembly of recombinant adenoviral genomes from high-copy plasmids. PLOS ONE, 13(6), e0199563. doi:10.1371/journal.pone.0199563

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem