Mostrar el registro sencillo del ítem
dc.contributor.author | Herrera-Luna, Jorge Carlos | es_ES |
dc.contributor.author | Sampedro, Diego | es_ES |
dc.contributor.author | Jiménez Molero, María Consuelo | es_ES |
dc.contributor.author | Pérez-Ruiz, Raúl | es_ES |
dc.date.accessioned | 2021-02-25T04:49:31Z | |
dc.date.available | 2021-02-25T04:49:31Z | |
dc.date.issued | 2020-04-17 | es_ES |
dc.identifier.issn | 1523-7060 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162368 | |
dc.description.abstract | [EN] Boron-containing thiophenes are important entities in organic/medicinal chemistry as well as in material science. In this Letter, a novel, straightforward, and fast procedure for their production employing visible light as an energy source at room temperature and ambient pressure is reported. All substrates are commercially available, and the process does not require the use of any external photocatalyst. | es_ES |
dc.description.sponsorship | Financial support from the Generalitat Valenciana (CIDE-GENT/2018/044) and the Spanish Government (CTQ2016-78875-P, CTQ2017-87372-P, and BES-2017-080215) is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Chemical Society | es_ES |
dc.relation.ispartof | Organic Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Rapid Access to Borylated Thiophenes Enabled by Visible Light | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1021/acs.orglett.0c01076 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87372-P/ES/CONTROL DE PROPIEDADES POR LUZ: FOTOFARMACOLOGIA, FOTOPROTECCION Y FOTOCATALISIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2017-080215/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Herrera-Luna, JC.; Sampedro, D.; Jiménez Molero, MC.; Pérez-Ruiz, R. (2020). Rapid Access to Borylated Thiophenes Enabled by Visible Light. Organic Letters. 22(8):3273-3278. https://doi.org/10.1021/acs.orglett.0c01076 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1021/acs.orglett.0c01076 | es_ES |
dc.description.upvformatpinicio | 3273 | es_ES |
dc.description.upvformatpfin | 3278 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.pmid | 32243179 | es_ES |
dc.relation.pasarela | S\408528 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Hall, D. G. (Ed.). (2005). Boronic Acids. doi:10.1002/3527606548 | es_ES |
dc.description.references | Miyaura, N., & Suzuki, A. (1995). Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 95(7), 2457-2483. doi:10.1021/cr00039a007 | es_ES |
dc.description.references | Miyaura, N. (2002). Organoboron Compounds. Cross-Coupling Reactions, 11-59. doi:10.1007/3-540-45313-x_2 | es_ES |
dc.description.references | Yan, J., Fang, H., & Wang, B. (2005). Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. Medicinal Research Reviews, 25(5), 490-520. doi:10.1002/med.20038 | es_ES |
dc.description.references | Thongpaen, J., Manguin, R., Dorcet, V., Vives, T., Duhayon, C., Mauduit, M., & Baslé, O. (2019). Visible Light Induced Rhodium(I)‐Catalyzed C−H Borylation. Angewandte Chemie International Edition, 58(43), 15244-15248. doi:10.1002/anie.201905924 | es_ES |
dc.description.references | Iqbal, S. A., Cid, J., Procter, R. J., Uzelac, M., Yuan, K., & Ingleson, M. J. (2019). Acyl‐Directed ortho ‐Borylation of Anilines and C7 Borylation of Indoles using just BBr 3. Angewandte Chemie International Edition, 58(43), 15381-15385. doi:10.1002/anie.201909786 | es_ES |
dc.description.references | Haldar, C., Emdadul Hoque, M., Bisht, R., & Chattopadhyay, B. (2018). Concept of Ir-catalyzed C H bond activation/borylation by noncovalent interaction. Tetrahedron Letters, 59(14), 1269-1277. doi:10.1016/j.tetlet.2018.01.098 | es_ES |
dc.description.references | Yan, G., Huang, D., & Wu, X. (2017). Recent Advances in C-B Bond Formation through a Free Radical Pathway. Advanced Synthesis & Catalysis, 360(6), 1040-1053. doi:10.1002/adsc.201701030 | es_ES |
dc.description.references | Cuenca, A. B., Shishido, R., Ito, H., & Fernández, E. (2017). Transition-metal-free B–B and B–interelement reactions with organic molecules. Chemical Society Reviews, 46(2), 415-430. doi:10.1039/c6cs00692b | es_ES |
dc.description.references | Xu, L., Wang, G., Zhang, S., Wang, H., Wang, L., Liu, L., … Li, P. (2017). Recent advances in catalytic C−H borylation reactions. Tetrahedron, 73(51), 7123-7157. doi:10.1016/j.tet.2017.11.005 | es_ES |
dc.description.references | Ros, A., Fernández, R., & Lassaletta, J. M. (2014). Functional group directed C–H borylation. Chem. Soc. Rev., 43(10), 3229-3243. doi:10.1039/c3cs60418g | es_ES |
dc.description.references | Hartwig, J. F. (2011). Borylation and Silylation of C–H Bonds: A Platform for Diverse C–H Bond Functionalizations. Accounts of Chemical Research, 45(6), 864-873. doi:10.1021/ar200206a | es_ES |
dc.description.references | Hartwig, J. F. (2011). Regioselectivity of the borylation of alkanes and arenes. Chemical Society Reviews, 40(4), 1992. doi:10.1039/c0cs00156b | es_ES |
dc.description.references | Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M., & Hartwig, J. F. (2009). C−H Activation for the Construction of C−B Bonds. Chemical Reviews, 110(2), 890-931. doi:10.1021/cr900206p | es_ES |
dc.description.references | Mfuh, A. M., Doyle, J. D., Chhetri, B., Arman, H. D., & Larionov, O. V. (2016). Scalable, Metal- and Additive-Free, Photoinduced Borylation of Haloarenes and Quaternary Arylammonium Salts. Journal of the American Chemical Society, 138(9), 2985-2988. doi:10.1021/jacs.6b01376 | es_ES |
dc.description.references | Mfuh, A. M., Nguyen, V. T., Chhetri, B., Burch, J. E., Doyle, J. D., Nesterov, V. N., … Larionov, O. V. (2016). Additive- and Metal-Free, Predictably 1,2- and 1,3-Regioselective, Photoinduced Dual C–H/C–X Borylation of Haloarenes. Journal of the American Chemical Society, 138(27), 8408-8411. doi:10.1021/jacs.6b05436 | es_ES |
dc.description.references | Chen, K., Cheung, M. S., Lin, Z., & Li, P. (2016). Metal-free borylation of electron-rich aryl (pseudo)halides under continuous-flow photolytic conditions. Organic Chemistry Frontiers, 3(7), 875-879. doi:10.1039/c6qo00109b | es_ES |
dc.description.references | Chen, K., Zhang, S., He, P., & Li, P. (2016). Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions. Chemical Science, 7(6), 3676-3680. doi:10.1039/c5sc04521e | es_ES |
dc.description.references | Rygus, J. P. G., & Crudden, C. M. (2017). Enantiospecific and Iterative Suzuki–Miyaura Cross-Couplings. Journal of the American Chemical Society, 139(50), 18124-18137. doi:10.1021/jacs.7b08326 | es_ES |
dc.description.references | Crudden, C. M., Ziebenhaus, C., Rygus, J. P. G., Ghozati, K., Unsworth, P. J., Nambo, M., … Imao, D. (2016). Iterative protecting group-free cross-coupling leading to chiral multiply arylated structures. Nature Communications, 7(1). doi:10.1038/ncomms11065 | es_ES |
dc.description.references | Close, A. J., Kemmitt, P., Mark Roe, S., & Spencer, J. (2016). Regioselective routes to orthogonally-substituted aromatic MIDA boronates. Organic & Biomolecular Chemistry, 14(28), 6751-6756. doi:10.1039/c6ob01141a | es_ES |
dc.description.references | Li, J., Ballmer, S. G., Gillis, E. P., Fujii, S., Schmidt, M. J., Palazzolo, A. M. E., … Burke, M. D. (2015). Synthesis of many different types of organic small molecules using one automated process. Science, 347(6227), 1221-1226. doi:10.1126/science.aaa5414 | es_ES |
dc.description.references | Xu, L., Zhang, S., & Li, P. (2015). Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chemical Society Reviews, 44(24), 8848-8858. doi:10.1039/c5cs00338e | es_ES |
dc.description.references | Duret, G., Quinlan, R., Bisseret, P., & Blanchard, N. (2015). Boron chemistry in a new light. Chemical Science, 6(10), 5366-5382. doi:10.1039/c5sc02207j | es_ES |
dc.description.references | Li, J., Grillo, A. S., & Burke, M. D. (2015). From Synthesis to Function via Iterative Assembly of N-Methyliminodiacetic Acid Boronate Building Blocks. Accounts of Chemical Research, 48(8), 2297-2307. doi:10.1021/acs.accounts.5b00128 | es_ES |
dc.description.references | Lennox, A. J. J., & Lloyd-Jones, G. C. (2014). Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev., 43(1), 412-443. doi:10.1039/c3cs60197h | es_ES |
dc.description.references | Molander, G., & Canturk, B. (2009). Organotrifluoroborates and Monocoordinated Palladium Complexes as Catalystsâ A Perfect Combination for Suzukiâ Miyaura Coupling. Angewandte Chemie International Edition, 48(49), 9240-9261. doi:10.1002/anie.200904306 | es_ES |
dc.description.references | Martin, R., & Buchwald, S. L. (2008). Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Accounts of Chemical Research, 41(11), 1461-1473. doi:10.1021/ar800036s | es_ES |
dc.description.references | Darses, S., & Genet, J.-P. (2007). Potassium Organotrifluoroborates: New Perspectives in Organic Synthesis. Chemical Reviews, 108(1), 288-325. doi:10.1021/cr0509758 | es_ES |
dc.description.references | Ren, Y., & Jäkle, F. (2016). Merging thiophene with boron: new building blocks for conjugated materials. Dalton Transactions, 45(36), 13996-14007. doi:10.1039/c6dt02756c | es_ES |
dc.description.references | Branger, C., Lequan, M., Lequan, R. M., Barzoukas, M., & Fort, A. (1996). Boron derivatives containing a bithiophene bridge as new materials for non-linear optics. Journal of Materials Chemistry, 6(4), 555. doi:10.1039/jm9960600555 | es_ES |
dc.description.references | Noda, T., & Shirota, Y. (1998). 5,5‘-Bis(dimesitylboryl)-2,2‘-bithiophene and 5,5‘‘-Bis(dimesitylboryl)-2,2‘:5‘,2‘‘-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials. Journal of the American Chemical Society, 120(37), 9714-9715. doi:10.1021/ja9817343 | es_ES |
dc.description.references | Yuan, Z., Collings, J. C., Taylor, N. J., Marder, T. B., Jardin, C., & Halet, J.-F. (2000). Linear and Nonlinear Optical Properties of Three-Coordinate Organoboron Compounds. Journal of Solid State Chemistry, 154(1), 5-12. doi:10.1006/jssc.2000.8803 | es_ES |
dc.description.references | Noda, T., Ogawa, H., & Shirota, Y. (1999). A Blue-Emitting Organic Electroluminescent Device Using a Novel Emitting Amorphous Molecular Material, 5,5’-Bis(dimesitylboryl)-2,2’-bithiophene. Advanced Materials, 11(4), 283-285. doi:10.1002/(sici)1521-4095(199903)11:4<283::aid-adma283>3.0.co;2-v | es_ES |
dc.description.references | Ji, L., Edkins, R. M., Sewell, L. J., Beeby, A., Batsanov, A. S., Fucke, K., … Marder, T. B. (2014). Experimental and Theoretical Studies of Quadrupolar Oligothiophene‐Cored Chromophores Containing Dimesitylboryl Moieties as π‐Accepting End‐Groups: Syntheses, Structures, Fluorescence, and One‐ and Two‐Photon Absorption. Chemistry – A European Journal, 20(42), 13618-13635. doi:10.1002/chem.201402273 | es_ES |
dc.description.references | Bailey, P. J., Cousins, G., Snow, G. A., & White, A. J. (1980). Boron-containing antibacterial agents: effects on growth and morphology of bacteria under various culture conditions. Antimicrobial Agents and Chemotherapy, 17(4), 549-553. doi:10.1128/aac.17.4.549 | es_ES |
dc.description.references | Krause, E., & Renwanz, G. (1932). Neue Metallderivate des Thiophens, III. Mitteil.: Germanium-, Antimon-, Tellur- und Borthienyle. Berichte der deutschen chemischen Gesellschaft (A and B Series), 65(5), 777-784. doi:10.1002/cber.19320650518 | es_ES |
dc.description.references | Johnson, J. R., Campen, M. G. V., & Grummitt, O. (1938). Organoboron Compounds. II. The Reducing Action of Some Organoboronic Acids1. Journal of the American Chemical Society, 60(1), 111-115. doi:10.1021/ja01268a034 | es_ES |
dc.description.references | Kabalka, G. W., Sastry, U., Sastry, K. A. R., Knapp, F. F., & Srivastava, P. C. (1983). Synthesis of arylboronic acids via the reaction of borane with arylmagnesium halides. Journal of Organometallic Chemistry, 259(3), 269-274. doi:10.1016/0022-328x(83)87176-9 | es_ES |
dc.description.references | Ishiyama, T., Murata, M., & Miyaura, N. (1995). Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. The Journal of Organic Chemistry, 60(23), 7508-7510. doi:10.1021/jo00128a024 | es_ES |
dc.description.references | Li, W., Nelson, D. P., Jensen, M. S., Hoerrner, R. S., Cai, D., Larsen, R. D., & Reider, P. J. (2002). An Improved Protocol for the Preparation of 3-Pyridyl- and Some Arylboronic Acids. The Journal of Organic Chemistry, 67(15), 5394-5397. doi:10.1021/jo025792p | es_ES |
dc.description.references | Kawamorita, S., Ohmiya, H., & Sawamura, M. (2010). Ester-Directed Regioselective Borylation of Heteroarenes Catalyzed by a Silica-Supported Iridium Complex. The Journal of Organic Chemistry, 75(11), 3855-3858. doi:10.1021/jo100352b | es_ES |
dc.description.references | Kallepalli, V. A., Gore, K. A., Shi, F., Sanchez, L., Chotana, G. A., Miller, S. L., … Smith, M. R. (2015). Harnessing C–H Borylation/Deborylation for Selective Deuteration, Synthesis of Boronate Esters, and Late Stage Functionalization. The Journal of Organic Chemistry, 80(16), 8341-8353. doi:10.1021/acs.joc.5b01588 | es_ES |
dc.description.references | Bel Abed, H., & Blum, S. A. (2018). Transition-Metal-Free Synthesis of Borylated Thiophenes via Formal Thioboration. Organic Letters, 20(21), 6673-6677. doi:10.1021/acs.orglett.8b02727 | es_ES |
dc.description.references | Maiti, B., Abramov, A., Pérez-Ruiz, R., & Díaz Díaz, D. (2019). The Prospect of Photochemical Reactions in Confined Gel Media. Accounts of Chemical Research, 52(7), 1865-1876. doi:10.1021/acs.accounts.9b00097 | es_ES |
dc.description.references | Zhou, Q., Zou, Y., Lu, L., & Xiao, W. (2018). Visible‐Light‐Induced Organic Photochemical Reactions through Energy‐Transfer Pathways. Angewandte Chemie International Edition, 58(6), 1586-1604. doi:10.1002/anie.201803102 | es_ES |
dc.description.references | Stephenson, C., Yoon, T., & MacMillan, D. W. C. (2018). Visible Light Photocatalysis in Organic Chemistry. doi:10.1002/9783527674145 | es_ES |
dc.description.references | Savateev, A., & Antonietti, M. (2018). Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catalysis, 8(10), 9790-9808. doi:10.1021/acscatal.8b02595 | es_ES |
dc.description.references | Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766 | es_ES |
dc.description.references | Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057 | es_ES |
dc.description.references | Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r | es_ES |
dc.description.references | Neumeier, M., Sampedro, D., Májek, M., de la Peña O’Shea, V. A., Jacobi von Wangelin, A., & Pérez-Ruiz, R. (2017). Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 24(1), 105-108. doi:10.1002/chem.201705326 | es_ES |
dc.description.references | Jiang, M., Yang, H., & Fu, H. (2016). Visible-Light Photoredox Borylation of Aryl Halides and Subsequent Aerobic Oxidative Hydroxylation. Organic Letters, 18(20), 5248-5251. doi:10.1021/acs.orglett.6b02553 | es_ES |
dc.description.references | Candish, L., Teders, M., & Glorius, F. (2017). Transition-Metal-Free, Visible-Light-Enabled Decarboxylative Borylation of Aryl N-Hydroxyphthalimide Esters. Journal of the American Chemical Society, 139(22), 7440-7443. doi:10.1021/jacs.7b03127 | es_ES |
dc.description.references | Wang, J., Qin, T., Chen, T.-G., Wimmer, L., Edwards, J. T., Cornella, J., … Baran, P. S. (2016). Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids. Angewandte Chemie, 128(33), 9828-9831. doi:10.1002/ange.201605463 | es_ES |
dc.description.references | Thorpe, S. B., Calderone, J. A., & Santos, W. L. (2012). Unexpected Copper(II) Catalysis: Catalytic Amine Base Promoted β-Borylation of α,β-Unsaturated Carbonyl Compounds in Water. Organic Letters, 14(7), 1918-1921. doi:10.1021/ol300575d | es_ES |
dc.description.references | Power, P. P. (2003). Persistent and Stable Radicals of the Heavier Main Group Elements and Related Species. Chemical Reviews, 103(3), 789-810. doi:10.1021/cr020406p | es_ES |
dc.description.references | Majek, M., & von Wangelin, A. J. (2013). Organocatalytic visible light mediated synthesis of aryl sulfides. Chemical Communications, 49(48), 5507. doi:10.1039/c3cc41867g | es_ES |
dc.description.references | Hu, D., Wang, L., & Li, P. (2017). Decarboxylative Borylation of Aliphatic Esters under Visible-Light Photoredox Conditions. Organic Letters, 19(10), 2770-2773. doi:10.1021/acs.orglett.7b01181 | es_ES |
dc.description.references | Friese, F. W., & Studer, A. (2019). New avenues for C–B bond formation via radical intermediates. Chemical Science, 10(37), 8503-8518. doi:10.1039/c9sc03765a | es_ES |