- -

Rapid Access to Borylated Thiophenes Enabled by Visible Light

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rapid Access to Borylated Thiophenes Enabled by Visible Light

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herrera-Luna, Jorge Carlos es_ES
dc.contributor.author Sampedro, Diego es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.contributor.author Pérez-Ruiz, Raúl es_ES
dc.date.accessioned 2021-02-25T04:49:31Z
dc.date.available 2021-02-25T04:49:31Z
dc.date.issued 2020-04-17 es_ES
dc.identifier.issn 1523-7060 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162368
dc.description.abstract [EN] Boron-containing thiophenes are important entities in organic/medicinal chemistry as well as in material science. In this Letter, a novel, straightforward, and fast procedure for their production employing visible light as an energy source at room temperature and ambient pressure is reported. All substrates are commercially available, and the process does not require the use of any external photocatalyst. es_ES
dc.description.sponsorship Financial support from the Generalitat Valenciana (CIDE-GENT/2018/044) and the Spanish Government (CTQ2016-78875-P, CTQ2017-87372-P, and BES-2017-080215) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Organic Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Rapid Access to Borylated Thiophenes Enabled by Visible Light es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.orglett.0c01076 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87372-P/ES/CONTROL DE PROPIEDADES POR LUZ: FOTOFARMACOLOGIA, FOTOPROTECCION Y FOTOCATALISIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2017-080215/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Herrera-Luna, JC.; Sampedro, D.; Jiménez Molero, MC.; Pérez-Ruiz, R. (2020). Rapid Access to Borylated Thiophenes Enabled by Visible Light. Organic Letters. 22(8):3273-3278. https://doi.org/10.1021/acs.orglett.0c01076 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.orglett.0c01076 es_ES
dc.description.upvformatpinicio 3273 es_ES
dc.description.upvformatpfin 3278 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 32243179 es_ES
dc.relation.pasarela S\408528 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hall, D. G. (Ed.). (2005). Boronic Acids. doi:10.1002/3527606548 es_ES
dc.description.references Miyaura, N., & Suzuki, A. (1995). Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 95(7), 2457-2483. doi:10.1021/cr00039a007 es_ES
dc.description.references Miyaura, N. (2002). Organoboron Compounds. Cross-Coupling Reactions, 11-59. doi:10.1007/3-540-45313-x_2 es_ES
dc.description.references Yan, J., Fang, H., & Wang, B. (2005). Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. Medicinal Research Reviews, 25(5), 490-520. doi:10.1002/med.20038 es_ES
dc.description.references Thongpaen, J., Manguin, R., Dorcet, V., Vives, T., Duhayon, C., Mauduit, M., & Baslé, O. (2019). Visible Light Induced Rhodium(I)‐Catalyzed C−H Borylation. Angewandte Chemie International Edition, 58(43), 15244-15248. doi:10.1002/anie.201905924 es_ES
dc.description.references Iqbal, S. A., Cid, J., Procter, R. J., Uzelac, M., Yuan, K., & Ingleson, M. J. (2019). Acyl‐Directed ortho ‐Borylation of Anilines and C7 Borylation of Indoles using just BBr 3. Angewandte Chemie International Edition, 58(43), 15381-15385. doi:10.1002/anie.201909786 es_ES
dc.description.references Haldar, C., Emdadul Hoque, M., Bisht, R., & Chattopadhyay, B. (2018). Concept of Ir-catalyzed C H bond activation/borylation by noncovalent interaction. Tetrahedron Letters, 59(14), 1269-1277. doi:10.1016/j.tetlet.2018.01.098 es_ES
dc.description.references Yan, G., Huang, D., & Wu, X. (2017). Recent Advances in C-B Bond Formation through a Free Radical Pathway. Advanced Synthesis & Catalysis, 360(6), 1040-1053. doi:10.1002/adsc.201701030 es_ES
dc.description.references Cuenca, A. B., Shishido, R., Ito, H., & Fernández, E. (2017). Transition-metal-free B–B and B–interelement reactions with organic molecules. Chemical Society Reviews, 46(2), 415-430. doi:10.1039/c6cs00692b es_ES
dc.description.references Xu, L., Wang, G., Zhang, S., Wang, H., Wang, L., Liu, L., … Li, P. (2017). Recent advances in catalytic C−H borylation reactions. Tetrahedron, 73(51), 7123-7157. doi:10.1016/j.tet.2017.11.005 es_ES
dc.description.references Ros, A., Fernández, R., & Lassaletta, J. M. (2014). Functional group directed C–H borylation. Chem. Soc. Rev., 43(10), 3229-3243. doi:10.1039/c3cs60418g es_ES
dc.description.references Hartwig, J. F. (2011). Borylation and Silylation of C–H Bonds: A Platform for Diverse C–H Bond Functionalizations. Accounts of Chemical Research, 45(6), 864-873. doi:10.1021/ar200206a es_ES
dc.description.references Hartwig, J. F. (2011). Regioselectivity of the borylation of alkanes and arenes. Chemical Society Reviews, 40(4), 1992. doi:10.1039/c0cs00156b es_ES
dc.description.references Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M., & Hartwig, J. F. (2009). C−H Activation for the Construction of C−B Bonds. Chemical Reviews, 110(2), 890-931. doi:10.1021/cr900206p es_ES
dc.description.references Mfuh, A. M., Doyle, J. D., Chhetri, B., Arman, H. D., & Larionov, O. V. (2016). Scalable, Metal- and Additive-Free, Photoinduced Borylation of Haloarenes and Quaternary Arylammonium Salts. Journal of the American Chemical Society, 138(9), 2985-2988. doi:10.1021/jacs.6b01376 es_ES
dc.description.references Mfuh, A. M., Nguyen, V. T., Chhetri, B., Burch, J. E., Doyle, J. D., Nesterov, V. N., … Larionov, O. V. (2016). Additive- and Metal-Free, Predictably 1,2- and 1,3-Regioselective, Photoinduced Dual C–H/C–X Borylation of Haloarenes. Journal of the American Chemical Society, 138(27), 8408-8411. doi:10.1021/jacs.6b05436 es_ES
dc.description.references Chen, K., Cheung, M. S., Lin, Z., & Li, P. (2016). Metal-free borylation of electron-rich aryl (pseudo)halides under continuous-flow photolytic conditions. Organic Chemistry Frontiers, 3(7), 875-879. doi:10.1039/c6qo00109b es_ES
dc.description.references Chen, K., Zhang, S., He, P., & Li, P. (2016). Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions. Chemical Science, 7(6), 3676-3680. doi:10.1039/c5sc04521e es_ES
dc.description.references Rygus, J. P. G., & Crudden, C. M. (2017). Enantiospecific and Iterative Suzuki–Miyaura Cross-Couplings. Journal of the American Chemical Society, 139(50), 18124-18137. doi:10.1021/jacs.7b08326 es_ES
dc.description.references Crudden, C. M., Ziebenhaus, C., Rygus, J. P. G., Ghozati, K., Unsworth, P. J., Nambo, M., … Imao, D. (2016). Iterative protecting group-free cross-coupling leading to chiral multiply arylated structures. Nature Communications, 7(1). doi:10.1038/ncomms11065 es_ES
dc.description.references Close, A. J., Kemmitt, P., Mark Roe, S., & Spencer, J. (2016). Regioselective routes to orthogonally-substituted aromatic MIDA boronates. Organic & Biomolecular Chemistry, 14(28), 6751-6756. doi:10.1039/c6ob01141a es_ES
dc.description.references Li, J., Ballmer, S. G., Gillis, E. P., Fujii, S., Schmidt, M. J., Palazzolo, A. M. E., … Burke, M. D. (2015). Synthesis of many different types of organic small molecules using one automated process. Science, 347(6227), 1221-1226. doi:10.1126/science.aaa5414 es_ES
dc.description.references Xu, L., Zhang, S., & Li, P. (2015). Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chemical Society Reviews, 44(24), 8848-8858. doi:10.1039/c5cs00338e es_ES
dc.description.references Duret, G., Quinlan, R., Bisseret, P., & Blanchard, N. (2015). Boron chemistry in a new light. Chemical Science, 6(10), 5366-5382. doi:10.1039/c5sc02207j es_ES
dc.description.references Li, J., Grillo, A. S., & Burke, M. D. (2015). From Synthesis to Function via Iterative Assembly of N-Methyliminodiacetic Acid Boronate Building Blocks. Accounts of Chemical Research, 48(8), 2297-2307. doi:10.1021/acs.accounts.5b00128 es_ES
dc.description.references Lennox, A. J. J., & Lloyd-Jones, G. C. (2014). Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev., 43(1), 412-443. doi:10.1039/c3cs60197h es_ES
dc.description.references Molander, G., & Canturk, B. (2009). Organotrifluoroborates and Monocoordinated Palladium Complexes as Catalystsâ A Perfect Combination for Suzukiâ Miyaura Coupling. Angewandte Chemie International Edition, 48(49), 9240-9261. doi:10.1002/anie.200904306 es_ES
dc.description.references Martin, R., & Buchwald, S. L. (2008). Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Accounts of Chemical Research, 41(11), 1461-1473. doi:10.1021/ar800036s es_ES
dc.description.references Darses, S., & Genet, J.-P. (2007). Potassium Organotrifluoroborates:  New Perspectives in Organic Synthesis. Chemical Reviews, 108(1), 288-325. doi:10.1021/cr0509758 es_ES
dc.description.references Ren, Y., & Jäkle, F. (2016). Merging thiophene with boron: new building blocks for conjugated materials. Dalton Transactions, 45(36), 13996-14007. doi:10.1039/c6dt02756c es_ES
dc.description.references Branger, C., Lequan, M., Lequan, R. M., Barzoukas, M., & Fort, A. (1996). Boron derivatives containing a bithiophene bridge as new materials for non-linear optics. Journal of Materials Chemistry, 6(4), 555. doi:10.1039/jm9960600555 es_ES
dc.description.references Noda, T., & Shirota, Y. (1998). 5,5‘-Bis(dimesitylboryl)-2,2‘-bithiophene and 5,5‘‘-Bis(dimesitylboryl)-2,2‘:5‘,2‘‘-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials. Journal of the American Chemical Society, 120(37), 9714-9715. doi:10.1021/ja9817343 es_ES
dc.description.references Yuan, Z., Collings, J. C., Taylor, N. J., Marder, T. B., Jardin, C., & Halet, J.-F. (2000). Linear and Nonlinear Optical Properties of Three-Coordinate Organoboron Compounds. Journal of Solid State Chemistry, 154(1), 5-12. doi:10.1006/jssc.2000.8803 es_ES
dc.description.references Noda, T., Ogawa, H., & Shirota, Y. (1999). A Blue-Emitting Organic Electroluminescent Device Using a Novel Emitting Amorphous Molecular Material, 5,5’-Bis(dimesitylboryl)-2,2’-bithiophene. Advanced Materials, 11(4), 283-285. doi:10.1002/(sici)1521-4095(199903)11:4<283::aid-adma283>3.0.co;2-v es_ES
dc.description.references Ji, L., Edkins, R. M., Sewell, L. J., Beeby, A., Batsanov, A. S., Fucke, K., … Marder, T. B. (2014). Experimental and Theoretical Studies of Quadrupolar Oligothiophene‐Cored Chromophores Containing Dimesitylboryl Moieties as π‐Accepting End‐Groups: Syntheses, Structures, Fluorescence, and One‐ and Two‐Photon Absorption. Chemistry – A European Journal, 20(42), 13618-13635. doi:10.1002/chem.201402273 es_ES
dc.description.references Bailey, P. J., Cousins, G., Snow, G. A., & White, A. J. (1980). Boron-containing antibacterial agents: effects on growth and morphology of bacteria under various culture conditions. Antimicrobial Agents and Chemotherapy, 17(4), 549-553. doi:10.1128/aac.17.4.549 es_ES
dc.description.references Krause, E., & Renwanz, G. (1932). Neue Metallderivate des Thiophens, III. Mitteil.: Germanium-, Antimon-, Tellur- und Borthienyle. Berichte der deutschen chemischen Gesellschaft (A and B Series), 65(5), 777-784. doi:10.1002/cber.19320650518 es_ES
dc.description.references Johnson, J. R., Campen, M. G. V., & Grummitt, O. (1938). Organoboron Compounds. II. The Reducing Action of Some Organoboronic Acids1. Journal of the American Chemical Society, 60(1), 111-115. doi:10.1021/ja01268a034 es_ES
dc.description.references Kabalka, G. W., Sastry, U., Sastry, K. A. R., Knapp, F. F., & Srivastava, P. C. (1983). Synthesis of arylboronic acids via the reaction of borane with arylmagnesium halides. Journal of Organometallic Chemistry, 259(3), 269-274. doi:10.1016/0022-328x(83)87176-9 es_ES
dc.description.references Ishiyama, T., Murata, M., & Miyaura, N. (1995). Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. The Journal of Organic Chemistry, 60(23), 7508-7510. doi:10.1021/jo00128a024 es_ES
dc.description.references Li, W., Nelson, D. P., Jensen, M. S., Hoerrner, R. S., Cai, D., Larsen, R. D., & Reider, P. J. (2002). An Improved Protocol for the Preparation of 3-Pyridyl- and Some Arylboronic Acids. The Journal of Organic Chemistry, 67(15), 5394-5397. doi:10.1021/jo025792p es_ES
dc.description.references Kawamorita, S., Ohmiya, H., & Sawamura, M. (2010). Ester-Directed Regioselective Borylation of Heteroarenes Catalyzed by a Silica-Supported Iridium Complex. The Journal of Organic Chemistry, 75(11), 3855-3858. doi:10.1021/jo100352b es_ES
dc.description.references Kallepalli, V. A., Gore, K. A., Shi, F., Sanchez, L., Chotana, G. A., Miller, S. L., … Smith, M. R. (2015). Harnessing C–H Borylation/Deborylation for Selective Deuteration, Synthesis of Boronate Esters, and Late Stage Functionalization. The Journal of Organic Chemistry, 80(16), 8341-8353. doi:10.1021/acs.joc.5b01588 es_ES
dc.description.references Bel Abed, H., & Blum, S. A. (2018). Transition-Metal-Free Synthesis of Borylated Thiophenes via Formal Thioboration. Organic Letters, 20(21), 6673-6677. doi:10.1021/acs.orglett.8b02727 es_ES
dc.description.references Maiti, B., Abramov, A., Pérez-Ruiz, R., & Díaz Díaz, D. (2019). The Prospect of Photochemical Reactions in Confined Gel Media. Accounts of Chemical Research, 52(7), 1865-1876. doi:10.1021/acs.accounts.9b00097 es_ES
dc.description.references Zhou, Q., Zou, Y., Lu, L., & Xiao, W. (2018). Visible‐Light‐Induced Organic Photochemical Reactions through Energy‐Transfer Pathways. Angewandte Chemie International Edition, 58(6), 1586-1604. doi:10.1002/anie.201803102 es_ES
dc.description.references Stephenson, C., Yoon, T., & MacMillan, D. W. C. (2018). Visible Light Photocatalysis in Organic Chemistry. doi:10.1002/9783527674145 es_ES
dc.description.references Savateev, A., & Antonietti, M. (2018). Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catalysis, 8(10), 9790-9808. doi:10.1021/acscatal.8b02595 es_ES
dc.description.references Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766 es_ES
dc.description.references Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057 es_ES
dc.description.references Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r es_ES
dc.description.references Neumeier, M., Sampedro, D., Májek, M., de la Peña O’Shea, V. A., Jacobi von Wangelin, A., & Pérez-Ruiz, R. (2017). Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 24(1), 105-108. doi:10.1002/chem.201705326 es_ES
dc.description.references Jiang, M., Yang, H., & Fu, H. (2016). Visible-Light Photoredox Borylation of Aryl Halides and Subsequent Aerobic Oxidative Hydroxylation. Organic Letters, 18(20), 5248-5251. doi:10.1021/acs.orglett.6b02553 es_ES
dc.description.references Candish, L., Teders, M., & Glorius, F. (2017). Transition-Metal-Free, Visible-Light-Enabled Decarboxylative Borylation of Aryl N-Hydroxyphthalimide Esters. Journal of the American Chemical Society, 139(22), 7440-7443. doi:10.1021/jacs.7b03127 es_ES
dc.description.references Wang, J., Qin, T., Chen, T.-G., Wimmer, L., Edwards, J. T., Cornella, J., … Baran, P. S. (2016). Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids. Angewandte Chemie, 128(33), 9828-9831. doi:10.1002/ange.201605463 es_ES
dc.description.references Thorpe, S. B., Calderone, J. A., & Santos, W. L. (2012). Unexpected Copper(II) Catalysis: Catalytic Amine Base Promoted β-Borylation of α,β-Unsaturated Carbonyl Compounds in Water. Organic Letters, 14(7), 1918-1921. doi:10.1021/ol300575d es_ES
dc.description.references Power, P. P. (2003). Persistent and Stable Radicals of the Heavier Main Group Elements and Related Species. Chemical Reviews, 103(3), 789-810. doi:10.1021/cr020406p es_ES
dc.description.references Majek, M., & von Wangelin, A. J. (2013). Organocatalytic visible light mediated synthesis of aryl sulfides. Chemical Communications, 49(48), 5507. doi:10.1039/c3cc41867g es_ES
dc.description.references Hu, D., Wang, L., & Li, P. (2017). Decarboxylative Borylation of Aliphatic Esters under Visible-Light Photoredox Conditions. Organic Letters, 19(10), 2770-2773. doi:10.1021/acs.orglett.7b01181 es_ES
dc.description.references Friese, F. W., & Studer, A. (2019). New avenues for C–B bond formation via radical intermediates. Chemical Science, 10(37), 8503-8518. doi:10.1039/c9sc03765a es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem