- -

Rapid Access to Borylated Thiophenes Enabled by Visible Light

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rapid Access to Borylated Thiophenes Enabled by Visible Light

Mostrar el registro completo del ítem

Herrera-Luna, JC.; Sampedro, D.; Jiménez Molero, MC.; Pérez-Ruiz, R. (2020). Rapid Access to Borylated Thiophenes Enabled by Visible Light. Organic Letters. 22(8):3273-3278. https://doi.org/10.1021/acs.orglett.0c01076

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162368

Ficheros en el ítem

Metadatos del ítem

Título: Rapid Access to Borylated Thiophenes Enabled by Visible Light
Autor: Herrera-Luna, Jorge Carlos Sampedro, Diego Jiménez Molero, María Consuelo Pérez-Ruiz, Raúl
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Boron-containing thiophenes are important entities in organic/medicinal chemistry as well as in material science. In this Letter, a novel, straightforward, and fast procedure for their production employing visible ...[+]
Derechos de uso: Cerrado
Fuente:
Organic Letters. (issn: 1523-7060 )
DOI: 10.1021/acs.orglett.0c01076
Editorial:
American Chemical Society
Versión del editor: https://doi.org/10.1021/acs.orglett.0c01076
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87372-P/ES/CONTROL DE PROPIEDADES POR LUZ: FOTOFARMACOLOGIA, FOTOPROTECCION Y FOTOCATALISIS/
info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES/
info:eu-repo/grantAgreement/AEI//BES-2017-080215/
info:eu-repo/grantAgreement/GVA//CIDEGENT%2F2018%2F044/
Agradecimientos:
Financial support from the Generalitat Valenciana (CIDE-GENT/2018/044) and the Spanish Government (CTQ2016-78875-P, CTQ2017-87372-P, and BES-2017-080215) is gratefully acknowledged.
Tipo: Artículo

References

Hall, D. G. (Ed.). (2005). Boronic Acids. doi:10.1002/3527606548

Miyaura, N., & Suzuki, A. (1995). Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 95(7), 2457-2483. doi:10.1021/cr00039a007

Miyaura, N. (2002). Organoboron Compounds. Cross-Coupling Reactions, 11-59. doi:10.1007/3-540-45313-x_2 [+]
Hall, D. G. (Ed.). (2005). Boronic Acids. doi:10.1002/3527606548

Miyaura, N., & Suzuki, A. (1995). Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 95(7), 2457-2483. doi:10.1021/cr00039a007

Miyaura, N. (2002). Organoboron Compounds. Cross-Coupling Reactions, 11-59. doi:10.1007/3-540-45313-x_2

Yan, J., Fang, H., & Wang, B. (2005). Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. Medicinal Research Reviews, 25(5), 490-520. doi:10.1002/med.20038

Thongpaen, J., Manguin, R., Dorcet, V., Vives, T., Duhayon, C., Mauduit, M., & Baslé, O. (2019). Visible Light Induced Rhodium(I)‐Catalyzed C−H Borylation. Angewandte Chemie International Edition, 58(43), 15244-15248. doi:10.1002/anie.201905924

Iqbal, S. A., Cid, J., Procter, R. J., Uzelac, M., Yuan, K., & Ingleson, M. J. (2019). Acyl‐Directed ortho ‐Borylation of Anilines and C7 Borylation of Indoles using just BBr 3. Angewandte Chemie International Edition, 58(43), 15381-15385. doi:10.1002/anie.201909786

Haldar, C., Emdadul Hoque, M., Bisht, R., & Chattopadhyay, B. (2018). Concept of Ir-catalyzed C H bond activation/borylation by noncovalent interaction. Tetrahedron Letters, 59(14), 1269-1277. doi:10.1016/j.tetlet.2018.01.098

Yan, G., Huang, D., & Wu, X. (2017). Recent Advances in C-B Bond Formation through a Free Radical Pathway. Advanced Synthesis & Catalysis, 360(6), 1040-1053. doi:10.1002/adsc.201701030

Cuenca, A. B., Shishido, R., Ito, H., & Fernández, E. (2017). Transition-metal-free B–B and B–interelement reactions with organic molecules. Chemical Society Reviews, 46(2), 415-430. doi:10.1039/c6cs00692b

Xu, L., Wang, G., Zhang, S., Wang, H., Wang, L., Liu, L., … Li, P. (2017). Recent advances in catalytic C−H borylation reactions. Tetrahedron, 73(51), 7123-7157. doi:10.1016/j.tet.2017.11.005

Ros, A., Fernández, R., & Lassaletta, J. M. (2014). Functional group directed C–H borylation. Chem. Soc. Rev., 43(10), 3229-3243. doi:10.1039/c3cs60418g

Hartwig, J. F. (2011). Borylation and Silylation of C–H Bonds: A Platform for Diverse C–H Bond Functionalizations. Accounts of Chemical Research, 45(6), 864-873. doi:10.1021/ar200206a

Hartwig, J. F. (2011). Regioselectivity of the borylation of alkanes and arenes. Chemical Society Reviews, 40(4), 1992. doi:10.1039/c0cs00156b

Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M., & Hartwig, J. F. (2009). C−H Activation for the Construction of C−B Bonds. Chemical Reviews, 110(2), 890-931. doi:10.1021/cr900206p

Mfuh, A. M., Doyle, J. D., Chhetri, B., Arman, H. D., & Larionov, O. V. (2016). Scalable, Metal- and Additive-Free, Photoinduced Borylation of Haloarenes and Quaternary Arylammonium Salts. Journal of the American Chemical Society, 138(9), 2985-2988. doi:10.1021/jacs.6b01376

Mfuh, A. M., Nguyen, V. T., Chhetri, B., Burch, J. E., Doyle, J. D., Nesterov, V. N., … Larionov, O. V. (2016). Additive- and Metal-Free, Predictably 1,2- and 1,3-Regioselective, Photoinduced Dual C–H/C–X Borylation of Haloarenes. Journal of the American Chemical Society, 138(27), 8408-8411. doi:10.1021/jacs.6b05436

Chen, K., Cheung, M. S., Lin, Z., & Li, P. (2016). Metal-free borylation of electron-rich aryl (pseudo)halides under continuous-flow photolytic conditions. Organic Chemistry Frontiers, 3(7), 875-879. doi:10.1039/c6qo00109b

Chen, K., Zhang, S., He, P., & Li, P. (2016). Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions. Chemical Science, 7(6), 3676-3680. doi:10.1039/c5sc04521e

Rygus, J. P. G., & Crudden, C. M. (2017). Enantiospecific and Iterative Suzuki–Miyaura Cross-Couplings. Journal of the American Chemical Society, 139(50), 18124-18137. doi:10.1021/jacs.7b08326

Crudden, C. M., Ziebenhaus, C., Rygus, J. P. G., Ghozati, K., Unsworth, P. J., Nambo, M., … Imao, D. (2016). Iterative protecting group-free cross-coupling leading to chiral multiply arylated structures. Nature Communications, 7(1). doi:10.1038/ncomms11065

Close, A. J., Kemmitt, P., Mark Roe, S., & Spencer, J. (2016). Regioselective routes to orthogonally-substituted aromatic MIDA boronates. Organic & Biomolecular Chemistry, 14(28), 6751-6756. doi:10.1039/c6ob01141a

Li, J., Ballmer, S. G., Gillis, E. P., Fujii, S., Schmidt, M. J., Palazzolo, A. M. E., … Burke, M. D. (2015). Synthesis of many different types of organic small molecules using one automated process. Science, 347(6227), 1221-1226. doi:10.1126/science.aaa5414

Xu, L., Zhang, S., & Li, P. (2015). Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chemical Society Reviews, 44(24), 8848-8858. doi:10.1039/c5cs00338e

Duret, G., Quinlan, R., Bisseret, P., & Blanchard, N. (2015). Boron chemistry in a new light. Chemical Science, 6(10), 5366-5382. doi:10.1039/c5sc02207j

Li, J., Grillo, A. S., & Burke, M. D. (2015). From Synthesis to Function via Iterative Assembly of N-Methyliminodiacetic Acid Boronate Building Blocks. Accounts of Chemical Research, 48(8), 2297-2307. doi:10.1021/acs.accounts.5b00128

Lennox, A. J. J., & Lloyd-Jones, G. C. (2014). Selection of boron reagents for Suzuki–Miyaura coupling. Chem. Soc. Rev., 43(1), 412-443. doi:10.1039/c3cs60197h

Molander, G., & Canturk, B. (2009). Organotrifluoroborates and Monocoordinated Palladium Complexes as Catalystsâ A Perfect Combination for Suzukiâ Miyaura Coupling. Angewandte Chemie International Edition, 48(49), 9240-9261. doi:10.1002/anie.200904306

Martin, R., & Buchwald, S. L. (2008). Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Accounts of Chemical Research, 41(11), 1461-1473. doi:10.1021/ar800036s

Darses, S., & Genet, J.-P. (2007). Potassium Organotrifluoroborates:  New Perspectives in Organic Synthesis. Chemical Reviews, 108(1), 288-325. doi:10.1021/cr0509758

Ren, Y., & Jäkle, F. (2016). Merging thiophene with boron: new building blocks for conjugated materials. Dalton Transactions, 45(36), 13996-14007. doi:10.1039/c6dt02756c

Branger, C., Lequan, M., Lequan, R. M., Barzoukas, M., & Fort, A. (1996). Boron derivatives containing a bithiophene bridge as new materials for non-linear optics. Journal of Materials Chemistry, 6(4), 555. doi:10.1039/jm9960600555

Noda, T., & Shirota, Y. (1998). 5,5‘-Bis(dimesitylboryl)-2,2‘-bithiophene and 5,5‘‘-Bis(dimesitylboryl)-2,2‘:5‘,2‘‘-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials. Journal of the American Chemical Society, 120(37), 9714-9715. doi:10.1021/ja9817343

Yuan, Z., Collings, J. C., Taylor, N. J., Marder, T. B., Jardin, C., & Halet, J.-F. (2000). Linear and Nonlinear Optical Properties of Three-Coordinate Organoboron Compounds. Journal of Solid State Chemistry, 154(1), 5-12. doi:10.1006/jssc.2000.8803

Noda, T., Ogawa, H., & Shirota, Y. (1999). A Blue-Emitting Organic Electroluminescent Device Using a Novel Emitting Amorphous Molecular Material, 5,5’-Bis(dimesitylboryl)-2,2’-bithiophene. Advanced Materials, 11(4), 283-285. doi:10.1002/(sici)1521-4095(199903)11:4<283::aid-adma283>3.0.co;2-v

Ji, L., Edkins, R. M., Sewell, L. J., Beeby, A., Batsanov, A. S., Fucke, K., … Marder, T. B. (2014). Experimental and Theoretical Studies of Quadrupolar Oligothiophene‐Cored Chromophores Containing Dimesitylboryl Moieties as π‐Accepting End‐Groups: Syntheses, Structures, Fluorescence, and One‐ and Two‐Photon Absorption. Chemistry – A European Journal, 20(42), 13618-13635. doi:10.1002/chem.201402273

Bailey, P. J., Cousins, G., Snow, G. A., & White, A. J. (1980). Boron-containing antibacterial agents: effects on growth and morphology of bacteria under various culture conditions. Antimicrobial Agents and Chemotherapy, 17(4), 549-553. doi:10.1128/aac.17.4.549

Krause, E., & Renwanz, G. (1932). Neue Metallderivate des Thiophens, III. Mitteil.: Germanium-, Antimon-, Tellur- und Borthienyle. Berichte der deutschen chemischen Gesellschaft (A and B Series), 65(5), 777-784. doi:10.1002/cber.19320650518

Johnson, J. R., Campen, M. G. V., & Grummitt, O. (1938). Organoboron Compounds. II. The Reducing Action of Some Organoboronic Acids1. Journal of the American Chemical Society, 60(1), 111-115. doi:10.1021/ja01268a034

Kabalka, G. W., Sastry, U., Sastry, K. A. R., Knapp, F. F., & Srivastava, P. C. (1983). Synthesis of arylboronic acids via the reaction of borane with arylmagnesium halides. Journal of Organometallic Chemistry, 259(3), 269-274. doi:10.1016/0022-328x(83)87176-9

Ishiyama, T., Murata, M., & Miyaura, N. (1995). Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. The Journal of Organic Chemistry, 60(23), 7508-7510. doi:10.1021/jo00128a024

Li, W., Nelson, D. P., Jensen, M. S., Hoerrner, R. S., Cai, D., Larsen, R. D., & Reider, P. J. (2002). An Improved Protocol for the Preparation of 3-Pyridyl- and Some Arylboronic Acids. The Journal of Organic Chemistry, 67(15), 5394-5397. doi:10.1021/jo025792p

Kawamorita, S., Ohmiya, H., & Sawamura, M. (2010). Ester-Directed Regioselective Borylation of Heteroarenes Catalyzed by a Silica-Supported Iridium Complex. The Journal of Organic Chemistry, 75(11), 3855-3858. doi:10.1021/jo100352b

Kallepalli, V. A., Gore, K. A., Shi, F., Sanchez, L., Chotana, G. A., Miller, S. L., … Smith, M. R. (2015). Harnessing C–H Borylation/Deborylation for Selective Deuteration, Synthesis of Boronate Esters, and Late Stage Functionalization. The Journal of Organic Chemistry, 80(16), 8341-8353. doi:10.1021/acs.joc.5b01588

Bel Abed, H., & Blum, S. A. (2018). Transition-Metal-Free Synthesis of Borylated Thiophenes via Formal Thioboration. Organic Letters, 20(21), 6673-6677. doi:10.1021/acs.orglett.8b02727

Maiti, B., Abramov, A., Pérez-Ruiz, R., & Díaz Díaz, D. (2019). The Prospect of Photochemical Reactions in Confined Gel Media. Accounts of Chemical Research, 52(7), 1865-1876. doi:10.1021/acs.accounts.9b00097

Zhou, Q., Zou, Y., Lu, L., & Xiao, W. (2018). Visible‐Light‐Induced Organic Photochemical Reactions through Energy‐Transfer Pathways. Angewandte Chemie International Edition, 58(6), 1586-1604. doi:10.1002/anie.201803102

Stephenson, C., Yoon, T., & MacMillan, D. W. C. (2018). Visible Light Photocatalysis in Organic Chemistry. doi:10.1002/9783527674145

Savateev, A., & Antonietti, M. (2018). Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catalysis, 8(10), 9790-9808. doi:10.1021/acscatal.8b02595

Marzo, L., Pagire, S. K., Reiser, O., & König, B. (2018). Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angewandte Chemie International Edition, 57(32), 10034-10072. doi:10.1002/anie.201709766

Romero, N. A., & Nicewicz, D. A. (2016). Organic Photoredox Catalysis. Chemical Reviews, 116(17), 10075-10166. doi:10.1021/acs.chemrev.6b00057

Prier, C. K., Rankic, D. A., & MacMillan, D. W. C. (2013). Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113(7), 5322-5363. doi:10.1021/cr300503r

Neumeier, M., Sampedro, D., Májek, M., de la Peña O’Shea, V. A., Jacobi von Wangelin, A., & Pérez-Ruiz, R. (2017). Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 24(1), 105-108. doi:10.1002/chem.201705326

Jiang, M., Yang, H., & Fu, H. (2016). Visible-Light Photoredox Borylation of Aryl Halides and Subsequent Aerobic Oxidative Hydroxylation. Organic Letters, 18(20), 5248-5251. doi:10.1021/acs.orglett.6b02553

Candish, L., Teders, M., & Glorius, F. (2017). Transition-Metal-Free, Visible-Light-Enabled Decarboxylative Borylation of Aryl N-Hydroxyphthalimide Esters. Journal of the American Chemical Society, 139(22), 7440-7443. doi:10.1021/jacs.7b03127

Wang, J., Qin, T., Chen, T.-G., Wimmer, L., Edwards, J. T., Cornella, J., … Baran, P. S. (2016). Nickel-Catalyzed Cross-Coupling of Redox-Active Esters with Boronic Acids. Angewandte Chemie, 128(33), 9828-9831. doi:10.1002/ange.201605463

Thorpe, S. B., Calderone, J. A., & Santos, W. L. (2012). Unexpected Copper(II) Catalysis: Catalytic Amine Base Promoted β-Borylation of α,β-Unsaturated Carbonyl Compounds in Water. Organic Letters, 14(7), 1918-1921. doi:10.1021/ol300575d

Power, P. P. (2003). Persistent and Stable Radicals of the Heavier Main Group Elements and Related Species. Chemical Reviews, 103(3), 789-810. doi:10.1021/cr020406p

Majek, M., & von Wangelin, A. J. (2013). Organocatalytic visible light mediated synthesis of aryl sulfides. Chemical Communications, 49(48), 5507. doi:10.1039/c3cc41867g

Hu, D., Wang, L., & Li, P. (2017). Decarboxylative Borylation of Aliphatic Esters under Visible-Light Photoredox Conditions. Organic Letters, 19(10), 2770-2773. doi:10.1021/acs.orglett.7b01181

Friese, F. W., & Studer, A. (2019). New avenues for C–B bond formation via radical intermediates. Chemical Science, 10(37), 8503-8518. doi:10.1039/c9sc03765a

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem