Mostrar el registro sencillo del ítem
dc.contributor.author | Flores-Lasluisa, Jhony X. | es_ES |
dc.contributor.author | Huerta, Francisco | es_ES |
dc.contributor.author | Cazorla-Amorós, Diego | es_ES |
dc.contributor.author | Morallon, Emilia | es_ES |
dc.date.accessioned | 2021-02-25T04:49:39Z | |
dc.date.available | 2021-02-25T04:49:39Z | |
dc.date.issued | 2020-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162372 | |
dc.description.abstract | [EN] LaMn1-xCoxO3 perovskites were synthesized by a modified sol-gel method which incorporates EDTA. These materials' electrochemical activity towards both oxygen reduction (ORR) and oxygen evolution reactions (OER) was studied. The cobalt substitution level determines some physicochemical properties and, particularly, the surface concentration of Co and Mn's different oxidation states. As a result, the electroactivity of perovskite materials can be tuned using their composition. The presence of cobalt at low concentration influences the catalytic activity positively, and better bifunctionality is attained. As in other perovskites, their low electrical conductivity limits their applicability in electrochemical devices. It was found that the electrochemical performance improved significantly by physically mixing with a mortar the active materials with two different carbon black materials. The existence of a synergistic effect between the electroactive component and the carbon material was interpreted in light of the strong carbon-oxygen-metal interaction. Some mixed samples are promising electrocatalysts towards both ORR and OER. | es_ES |
dc.description.sponsorship | This research was funded by Ministerio de Ciencia e Innovacion (Grant number: PID2019-105923RB-100) and (grant number: BES-2017-081598). And the APC was funded by Universidad de Alicante. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Nanomaterials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Cobalt-substitution | es_ES |
dc.subject | LaMnO3 perovskite | es_ES |
dc.subject | Carbon materials | es_ES |
dc.subject | Oxygen reduction reaction | es_ES |
dc.subject | Oxygen evolution reaction | es_ES |
dc.subject.classification | QUIMICA FISICA | es_ES |
dc.title | Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/nano10122394 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2017-081598/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F087/ES/Materiales nanoestructurados en análisis químico: Nuevas estrategias de preparación de la muestra basadas en (micro)extracción en fase sólida y desarrollo de nuevos sensores electroquímicos y espectroelectroquímicos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105923RB-I00/ES/DESARROLLO DE NUEVOS MATERIALES POR METODOS ELECTROQUIMICOS PARA APLICACIONES EN ENERGIA Y MEDIOAMBIENTE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Flores-Lasluisa, JX.; Huerta, F.; Cazorla-Amorós, D.; Morallon, E. (2020). Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER. Nanomaterials. 10(12):1-22. https://doi.org/10.3390/nano10122394 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/nano10122394 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2079-4991 | es_ES |
dc.relation.pasarela | S\426120 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Universidad de Alicante | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Xu, X., Wang, W., Zhou, W., & Shao, Z. (2018). Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy‐Related Applications. Small Methods, 2(7), 1800071. doi:10.1002/smtd.201800071 | es_ES |
dc.description.references | Dekel, D. R. (2018). Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources, 375, 158-169. doi:10.1016/j.jpowsour.2017.07.117 | es_ES |
dc.description.references | Banham, D., & Ye, S. (2017). Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2(3), 629-638. doi:10.1021/acsenergylett.6b00644 | es_ES |
dc.description.references | McCrory, C. C. L., Jung, S., Peters, J. C., & Jaramillo, T. F. (2013). Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 135(45), 16977-16987. doi:10.1021/ja407115p | es_ES |
dc.description.references | Marković, N. M., Schmidt, T. J., Stamenković, V., & Ross, P. N. (2001). Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells, 1(2), 105-116. doi:10.1002/1615-6854(200107)1:2<105::aid-fuce105>3.0.co;2-9 | es_ES |
dc.description.references | Chen, D., Chen, C., Baiyee, Z. M., Shao, Z., & Ciucci, F. (2015). Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 115(18), 9869-9921. doi:10.1021/acs.chemrev.5b00073 | es_ES |
dc.description.references | Osgood, H., Devaguptapu, S. V., Xu, H., Cho, J., & Wu, G. (2016). Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11(5), 601-625. doi:10.1016/j.nantod.2016.09.001 | es_ES |
dc.description.references | Longhi, M., Cova, C., Pargoletti, E., Coduri, M., Santangelo, S., Patanè, S., … Scavini, M. (2018). Synergistic Effects of Active Sites’ Nature and Hydrophilicity on the Oxygen Reduction Reaction Activity of Pt-Free Catalysts. Nanomaterials, 8(9), 643. doi:10.3390/nano8090643 | es_ES |
dc.description.references | Minguzzi, A., Longoni, G., Cappelletti, G., Pargoletti, E., Di Bari, C., Locatelli, C., … Vertova, A. (2016). The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances. Nanomaterials, 6(1), 10. doi:10.3390/nano6010010 | es_ES |
dc.description.references | Han, X., He, G., He, Y., Zhang, J., Zheng, X., Li, L., … Ma, T. (2017). Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 8(10), 1702222. doi:10.1002/aenm.201702222 | es_ES |
dc.description.references | Gao, S., & Geng, K. (2014). Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction. Nano Energy, 6, 44-50. doi:10.1016/j.nanoen.2014.02.013 | es_ES |
dc.description.references | Han, X., Zhang, W., Ma, X., Zhong, C., Zhao, N., Hu, W., & Deng, Y. (2019). Identifying the Activation of Bimetallic Sites in NiCo 2 S 4 @g‐C 3 N 4 ‐CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 31(18), 1808281. doi:10.1002/adma.201808281 | es_ES |
dc.description.references | Han, X., Wu, X., Deng, Y., Liu, J., Lu, J., Zhong, C., & Hu, W. (2018). Ultrafine Pt Nanoparticle‐Decorated Pyrite‐Type CoS 2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 8(24), 1800935. doi:10.1002/aenm.201800935 | es_ES |
dc.description.references | Zhang, Z., Li, X., Zhong, C., Zhao, N., Deng, Y., Han, X., & Hu, W. (2020). Spontaneous Synthesis of Silver‐Nanoparticle‐Decorated Transition‐Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie, 132(18), 7312-7317. doi:10.1002/ange.202001703 | es_ES |
dc.description.references | Han, X., Ling, X., Yu, D., Xie, D., Li, L., Peng, S., … Hu, W. (2019). Atomically Dispersed Binary Co‐Ni Sites in Nitrogen‐Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. Advanced Materials, 31(49), 1905622. doi:10.1002/adma.201905622 | es_ES |
dc.description.references | Gupta, S., Kellogg, W., Xu, H., Liu, X., Cho, J., & Wu, G. (2015). Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chemistry - An Asian Journal, 11(1), 10-21. doi:10.1002/asia.201500640 | es_ES |
dc.description.references | Celorrio, V., Dann, E., Calvillo, L., Morgan, D. J., Hall, S. R., & Fermin, D. J. (2015). Oxygen Reduction at Carbon-Supported Lanthanides: The Role of the B-Site. ChemElectroChem, 3(2), 283-291. doi:10.1002/celc.201500440 | es_ES |
dc.description.references | Ashok, A., Kumar, A., Bhosale, R. R., Almomani, F., Malik, S. S., Suslov, S., & Tarlochan, F. (2018). Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. Journal of Electroanalytical Chemistry, 809, 22-30. doi:10.1016/j.jelechem.2017.12.043 | es_ES |
dc.description.references | Sunarso, J., Torriero, A. A. J., Zhou, W., Howlett, P. C., & Forsyth, M. (2012). Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study. The Journal of Physical Chemistry C, 116(9), 5827-5834. doi:10.1021/jp211946n | es_ES |
dc.description.references | Sun, J., Du, L., Sun, B., Han, G., Ma, Y., Wang, J., … Yin, G. (2021). A bifunctional perovskite oxide catalyst: The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping. Journal of Energy Chemistry, 54, 217-224. doi:10.1016/j.jechem.2020.05.064 | es_ES |
dc.description.references | Liu, X., Gong, H., Wang, T., Guo, H., Song, L., Xia, W., … He, J. (2018). Cobalt-Doped Perovskite-Type Oxide LaMnO3 as Bifunctional Oxygen Catalysts for Hybrid Lithium-Oxygen Batteries. Chemistry - An Asian Journal, 13(5), 528-535. doi:10.1002/asia.201701561 | es_ES |
dc.description.references | Hu, J., Wang, L., Shi, L., & Huang, H. (2015). Oxygen reduction reaction activity of LaMn1-xCoxO3-graphene nanocomposite for zinc-air battery. Electrochimica Acta, 161, 115-123. doi:10.1016/j.electacta.2015.02.048 | es_ES |
dc.description.references | Lee, D. U., Park, M. G., Park, H. W., Seo, M. H., Ismayilov, V., Ahmed, R., & Chen, Z. (2015). Highly active Co-doped LaMnO 3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc–air batteries. Electrochemistry Communications, 60, 38-41. doi:10.1016/j.elecom.2015.08.001 | es_ES |
dc.description.references | Flores-Lasluisa, J. X., Huerta, F., Cazorla-Amorós, D., & Morallón, E. (2019). Structural and morphological alterations induced by cobalt substitution in LaMnO3 perovskites. Journal of Colloid and Interface Science, 556, 658-666. doi:10.1016/j.jcis.2019.08.112 | es_ES |
dc.description.references | Pecchi, G., Campos, C., & Peña, O. (2009). Thermal stability against reduction of LaMn1−yCoyO3 perovskites. Materials Research Bulletin, 44(4), 846-853. doi:10.1016/j.materresbull.2008.09.009 | es_ES |
dc.description.references | Suntivich, J., Gasteiger, H. A., Yabuuchi, N., Nakanishi, H., Goodenough, J. B., & Shao-Horn, Y. (2011). Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chemistry, 3(7), 546-550. doi:10.1038/nchem.1069 | es_ES |
dc.description.references | Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 334(6061), 1383-1385. doi:10.1126/science.1212858 | es_ES |
dc.description.references | Safakas, A., Bampos, G., & Bebelis, S. (2019). Oxygen reduction reaction on La0.8Sr0.2CoxFe1-xO3-δ perovskite/carbon black electrocatalysts in alkaline medium. Applied Catalysis B: Environmental, 244, 225-232. doi:10.1016/j.apcatb.2018.11.015 | es_ES |
dc.description.references | Zhao, Y., Liu, T., Shi, Q., Yang, Q., Li, C., Zhang, D., & Zhang, C. (2018). Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electrocatalyst for lithium—air batteries. Green Energy & Environment, 3(1), 78-85. doi:10.1016/j.gee.2017.12.001 | es_ES |
dc.description.references | Xu, Y., Tsou, A., Fu, Y., Wang, J., Tian, J.-H., & Yang, R. (2015). Carbon-Coated Perovskite BaMnO3 Porous Nanorods with Enhanced Electrocatalytic Perporites for Oxygen Reduction and Oxygen Evolution. Electrochimica Acta, 174, 551-556. doi:10.1016/j.electacta.2015.05.184 | es_ES |
dc.description.references | Alegre, C., Modica, E., Aricò, A. S., & Baglio, V. (2018). Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices. Journal of Electroanalytical Chemistry, 808, 412-419. doi:10.1016/j.jelechem.2017.06.023 | es_ES |
dc.description.references | Hu, J., Liu, Q., Shi, Z., Zhang, L., & Huang, H. (2016). LaNiO3-nanorod/graphene composite as an efficient bi-functional catalyst for zinc–air batteries. RSC Advances, 6(89), 86386-86394. doi:10.1039/c6ra16610e | es_ES |
dc.description.references | Mattick, V. F., Jin, X., White, R. E., & Huang, K. (2019). Understanding the role of carbon in alkaline oxygen electrocatalysis: A case study on La0.6Sr0.4CoO3-δ/Vulcan carbon composite electrocatalyst. International Journal of Hydrogen Energy, 44(5), 2760-2769. doi:10.1016/j.ijhydene.2018.12.048 | es_ES |
dc.description.references | Liu, K., Li, J., Wang, Q., Wang, X., Qian, D., Jiang, J., … Chen, Z. (2017). Designed synthesis of LaCoO3/N-doped reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for ORR and OER in alkaline medium. Journal of Alloys and Compounds, 725, 260-269. doi:10.1016/j.jallcom.2017.07.178 | es_ES |
dc.description.references | Park, H. W., Lee, D. U., Park, M. G., Ahmed, R., Seo, M. H., Nazar, L. F., & Chen, Z. (2015). Perovskite-Nitrogen-Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium-Air Batteries. ChemSusChem, 8(6), 1058-1065. doi:10.1002/cssc.201402986 | es_ES |
dc.description.references | Poux, T., Napolskiy, F. S., Dintzer, T., Kéranguéven, G., Istomin, S. Y., Tsirlina, G. A., … Savinova, E. R. (2012). Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catalysis Today, 189(1), 83-92. doi:10.1016/j.cattod.2012.04.046 | es_ES |
dc.description.references | Kéranguéven, G., Ulhaq-Bouillet, C., Papaefthimiou, V., Royer, S., & Savinova, E. (2017). Perovskite-carbon composites synthesized through in situ autocombustion for the oxygen reduction reaction: the carbon effect. Electrochimica Acta, 245, 156-164. doi:10.1016/j.electacta.2017.05.113 | es_ES |
dc.description.references | Li, T., Liu, J., Jin, X., Wang, F., & Song, Y. (2016). Composition-dependent electro-catalytic activities of covalent carbon-LaMnO3 hybrids as synergistic catalysts for oxygen reduction reaction. Electrochimica Acta, 198, 115-126. doi:10.1016/j.electacta.2016.02.027 | es_ES |
dc.description.references | Liu, J., Jin, X., Song, W., Wang, F., Wang, N., & Song, Y. (2014). Facile preparation of modified carbon black-LaMnO3 hybrids and the effect of covalent coupling on the catalytic activity for oxygen reduction reaction. Chinese Journal of Catalysis, 35(7), 1173-1188. doi:10.1016/s1872-2067(14)60066-8 | es_ES |
dc.description.references | Alexander, C. T., Abakumov, A. M., Forslund, R. P., Johnston, K. P., & Stevenson, K. J. (2018). Role of the Carbon Support on the Oxygen Reduction and Evolution Activities in LaNiO3 Composite Electrodes in Alkaline Solution. ACS Applied Energy Materials, 1(4), 1549-1558. doi:10.1021/acsaem.7b00339 | es_ES |
dc.description.references | Gabe, A., Ruiz-Rosas, R., Morallón, E., & Cazorla-Amorós, D. (2019). Understanding of oxygen reduction reaction by examining carbon-oxygen gasification reaction and carbon active sites on metal and heteroatoms free carbon materials of different porosities and structures. Carbon, 148, 430-440. doi:10.1016/j.carbon.2019.03.092 | es_ES |
dc.description.references | Ryabova, A. S., Bonnefont, A., Simonov, P. A., Dintzer, T., Ulhaq-Bouillet, C., Bogdanova, Y. G., … Savinova, E. R. (2017). Further insights into the role of carbon in manganese oxide/carbon composites in the oxygen reduction reaction in alkaline media. Electrochimica Acta, 246, 643-653. doi:10.1016/j.electacta.2017.06.017 | es_ES |
dc.description.references | Boldyrev, V. V. (1987). Mechanochemistry of inorganic solids. Thermochimica Acta, 110, 303-317. doi:10.1016/0040-6031(87)88239-4 | es_ES |
dc.description.references | Xue, Y., Miao, H., Sun, S., Wang, Q., Li, S., & Liu, Z. (2017). (La1−xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 342, 192-201. doi:10.1016/j.jpowsour.2016.12.065 | es_ES |
dc.description.references | Celorrio, V., Calvillo, L., Granozzi, G., Russell, A. E., & Fermin, D. J. (2018). AMnO3 (A = Sr, La, Ca, Y) Perovskite Oxides as Oxygen Reduction Electrocatalysts. Topics in Catalysis, 61(3-4), 154-161. doi:10.1007/s11244-018-0886-5 | es_ES |
dc.description.references | La Rosa-Toro, A., Berenguer, R., Quijada, C., Montilla, F., Morallón, E., & Vázquez, J. L. (2006). Preparation and Characterization of Copper-Doped Cobalt Oxide Electrodes. The Journal of Physical Chemistry B, 110(47), 24021-24029. doi:10.1021/jp0642903 | es_ES |
dc.description.references | Pawar, S. M., Pawar, B. S., Babar, P. T., Ahmed, A. T. A., Chavan, H. S., Jo, Y., … Im, H. (2019). Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis. Applied Surface Science, 470, 360-367. doi:10.1016/j.apsusc.2018.11.151 | es_ES |
dc.description.references | Palikundwar, U. A., Sapre, V. B., Moharil, S. V., & Priolkar, K. R. (2009). Local structure around Mn and Co in LaMn1−xCoxO3 ± δ: an EXAFS study. Journal of Physics: Condensed Matter, 21(23), 235405. doi:10.1088/0953-8984/21/23/235405 | es_ES |
dc.description.references | Mattick, V. F., Jin, X., Yang, T., White, R. E., & Huang, K. (2018). Unraveling Oxygen Electrocatalysis Mechanisms on a Thin-Film Oxygen-Deficient Perovskite La0.6Sr0.4CoO3−δ. ACS Applied Energy Materials, 1(8), 3937-3946. doi:10.1021/acsaem.8b00669 | es_ES |
dc.description.references | Zhang, T., & Anderson, A. B. (2007). Oxygen reduction on platinum electrodes in base: Theoretical study. Electrochimica Acta, 53(2), 982-989. doi:10.1016/j.electacta.2007.08.014 | es_ES |
dc.description.references | Wang, Y., & Cheng, H.-P. (2013). Oxygen Reduction Activity on Perovskite Oxide Surfaces: A Comparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO3. The Journal of Physical Chemistry C, 117(5), 2106-2112. doi:10.1021/jp309203k | es_ES |
dc.description.references | Stoerzinger, K. A., Risch, M., Han, B., & Shao-Horn, Y. (2015). Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. ACS Catalysis, 5(10), 6021-6031. doi:10.1021/acscatal.5b01444 | es_ES |
dc.description.references | Bockris, J. O., & Otagawa, T. (1984). The Electrocatalysis of Oxygen Evolution on Perovskites. Journal of The Electrochemical Society, 131(2), 290-302. doi:10.1149/1.2115565 | es_ES |
dc.description.references | Zhao, Y., Hang, Y., Zhang, Y., Wang, Z., Yao, Y., He, X., … Zhang, D. (2017). Strontium-doped perovskite oxide La1-xSrxMnO3 (x = 0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O2 batteries. Electrochimica Acta, 232, 296-302. doi:10.1016/j.electacta.2017.02.155 | es_ES |
dc.description.references | Yamada, I., Fujii, H., Takamatsu, A., Ikeno, H., Wada, K., Tsukasaki, H., … Yagi, S. (2016). Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites. Advanced Materials, 29(4), 1603004. doi:10.1002/adma.201603004 | es_ES |
dc.description.references | Malkhandi, S., Trinh, P., Manohar, A. K., Manivannan, A., Balasubramanian, M., Prakash, G. K. S., & Narayanan, S. R. (2015). Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction. The Journal of Physical Chemistry C, 119(15), 8004-8013. doi:10.1021/jp512722x | es_ES |
dc.description.references | Zhu, Y., Zhou, W., & Shao, Z. (2017). Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 13(12), 1603793. doi:10.1002/smll.201603793 | es_ES |
dc.description.references | Mefford, J. T., Kurilovich, A. A., Saunders, J., Hardin, W. G., Abakumov, A. M., Forslund, R. P., … Stevenson, K. J. (2019). Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1−xSrxCoO3−δ perovskite composite electrodes. Physical Chemistry Chemical Physics, 21(6), 3327-3338. doi:10.1039/c8cp06268d | es_ES |
dc.description.references | Falcón, H., Carbonio, R. ., & Fierro, J. L. . (2001). Correlation of Oxidation States in LaFexNi1-xO3+δ Oxides with Catalytic Activity for H2O2 Decomposition. Journal of Catalysis, 203(2), 264-272. doi:10.1006/jcat.2001.3351 | es_ES |
dc.description.references | Shinagawa, T., Garcia-Esparza, A. T., & Takanabe, K. (2015). Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports, 5(1). doi:10.1038/srep13801 | es_ES |
dc.description.references | Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519 | es_ES |
dc.description.references | Zhou, J., Song, H., Ma, L., & Chen, X. (2011). Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Advances, 1(5), 782. doi:10.1039/c1ra00402f | es_ES |
dc.description.references | Ge, X., Goh, F. W. T., Li, B., Hor, T. S. A., Zhang, J., Xiao, P., … Liu, Z. (2015). Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co0.55Mn0.45)0.99O3−δ nanorod/graphene hybrid in alkaline media. Nanoscale, 7(19), 9046-9054. doi:10.1039/c5nr01272d | es_ES |
dc.description.references | Zhang, C., Wang, C., Zhan, W., Guo, Y., Guo, Y., Lu, G., … Giroir-Fendler, A. (2013). Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 129, 509-516. doi:10.1016/j.apcatb.2012.09.056 | es_ES |
dc.description.references | Pargoletti, E., Salvi, A., Giordana, A., Cerrato, G., Longhi, M., Minguzzi, A., … Vertova, A. (2020). ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst. Nanomaterials, 10(9), 1735. doi:10.3390/nano10091735 | es_ES |
dc.description.references | Assumpção, M. H. M. T., De Souza, R. F. B., Rascio, D. C., Silva, J. C. M., Calegaro, M. L., Gaubeur, I., … Santos, M. C. (2011). A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon, 49(8), 2842-2851. doi:10.1016/j.carbon.2011.03.014 | es_ES |
dc.description.references | Salman, A. ul R., Hyrve, S. M., Regli, S. K., Zubair, M., Enger, B. C., Lødeng, R., … Rønning, M. (2019). Catalytic Oxidation of NO over LaCo1−xBxO3 (B = Mn, Ni) Perovskites for Nitric Acid Production. Catalysts, 9(5), 429. doi:10.3390/catal9050429 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |