- -

Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Flores-Lasluisa, Jhony X. es_ES
dc.contributor.author Huerta, Francisco es_ES
dc.contributor.author Cazorla-Amorós, Diego es_ES
dc.contributor.author Morallon, Emilia es_ES
dc.date.accessioned 2021-02-25T04:49:39Z
dc.date.available 2021-02-25T04:49:39Z
dc.date.issued 2020-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162372
dc.description.abstract [EN] LaMn1-xCoxO3 perovskites were synthesized by a modified sol-gel method which incorporates EDTA. These materials' electrochemical activity towards both oxygen reduction (ORR) and oxygen evolution reactions (OER) was studied. The cobalt substitution level determines some physicochemical properties and, particularly, the surface concentration of Co and Mn's different oxidation states. As a result, the electroactivity of perovskite materials can be tuned using their composition. The presence of cobalt at low concentration influences the catalytic activity positively, and better bifunctionality is attained. As in other perovskites, their low electrical conductivity limits their applicability in electrochemical devices. It was found that the electrochemical performance improved significantly by physically mixing with a mortar the active materials with two different carbon black materials. The existence of a synergistic effect between the electroactive component and the carbon material was interpreted in light of the strong carbon-oxygen-metal interaction. Some mixed samples are promising electrocatalysts towards both ORR and OER. es_ES
dc.description.sponsorship This research was funded by Ministerio de Ciencia e Innovacion (Grant number: PID2019-105923RB-100) and (grant number: BES-2017-081598). And the APC was funded by Universidad de Alicante. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nanomaterials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cobalt-substitution es_ES
dc.subject LaMnO3 perovskite es_ES
dc.subject Carbon materials es_ES
dc.subject Oxygen reduction reaction es_ES
dc.subject Oxygen evolution reaction es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nano10122394 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2017-081598/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F087/ES/Materiales nanoestructurados en análisis químico: Nuevas estrategias de preparación de la muestra basadas en (micro)extracción en fase sólida y desarrollo de nuevos sensores electroquímicos y espectroelectroquímicos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105923RB-I00/ES/DESARROLLO DE NUEVOS MATERIALES POR METODOS ELECTROQUIMICOS PARA APLICACIONES EN ENERGIA Y MEDIOAMBIENTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Flores-Lasluisa, JX.; Huerta, F.; Cazorla-Amorós, D.; Morallon, E. (2020). Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER. Nanomaterials. 10(12):1-22. https://doi.org/10.3390/nano10122394 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/nano10122394 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2079-4991 es_ES
dc.relation.pasarela S\426120 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universidad de Alicante es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Xu, X., Wang, W., Zhou, W., & Shao, Z. (2018). Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy‐Related Applications. Small Methods, 2(7), 1800071. doi:10.1002/smtd.201800071 es_ES
dc.description.references Dekel, D. R. (2018). Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources, 375, 158-169. doi:10.1016/j.jpowsour.2017.07.117 es_ES
dc.description.references Banham, D., & Ye, S. (2017). Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2(3), 629-638. doi:10.1021/acsenergylett.6b00644 es_ES
dc.description.references McCrory, C. C. L., Jung, S., Peters, J. C., & Jaramillo, T. F. (2013). Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 135(45), 16977-16987. doi:10.1021/ja407115p es_ES
dc.description.references Marković, N. M., Schmidt, T. J., Stamenković, V., & Ross, P. N. (2001). Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells, 1(2), 105-116. doi:10.1002/1615-6854(200107)1:2<105::aid-fuce105>3.0.co;2-9 es_ES
dc.description.references Chen, D., Chen, C., Baiyee, Z. M., Shao, Z., & Ciucci, F. (2015). Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 115(18), 9869-9921. doi:10.1021/acs.chemrev.5b00073 es_ES
dc.description.references Osgood, H., Devaguptapu, S. V., Xu, H., Cho, J., & Wu, G. (2016). Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11(5), 601-625. doi:10.1016/j.nantod.2016.09.001 es_ES
dc.description.references Longhi, M., Cova, C., Pargoletti, E., Coduri, M., Santangelo, S., Patanè, S., … Scavini, M. (2018). Synergistic Effects of Active Sites’ Nature and Hydrophilicity on the Oxygen Reduction Reaction Activity of Pt-Free Catalysts. Nanomaterials, 8(9), 643. doi:10.3390/nano8090643 es_ES
dc.description.references Minguzzi, A., Longoni, G., Cappelletti, G., Pargoletti, E., Di Bari, C., Locatelli, C., … Vertova, A. (2016). The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances. Nanomaterials, 6(1), 10. doi:10.3390/nano6010010 es_ES
dc.description.references Han, X., He, G., He, Y., Zhang, J., Zheng, X., Li, L., … Ma, T. (2017). Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 8(10), 1702222. doi:10.1002/aenm.201702222 es_ES
dc.description.references Gao, S., & Geng, K. (2014). Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction. Nano Energy, 6, 44-50. doi:10.1016/j.nanoen.2014.02.013 es_ES
dc.description.references Han, X., Zhang, W., Ma, X., Zhong, C., Zhao, N., Hu, W., & Deng, Y. (2019). Identifying the Activation of Bimetallic Sites in NiCo 2 S 4 @g‐C 3 N 4 ‐CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 31(18), 1808281. doi:10.1002/adma.201808281 es_ES
dc.description.references Han, X., Wu, X., Deng, Y., Liu, J., Lu, J., Zhong, C., & Hu, W. (2018). Ultrafine Pt Nanoparticle‐Decorated Pyrite‐Type CoS 2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 8(24), 1800935. doi:10.1002/aenm.201800935 es_ES
dc.description.references Zhang, Z., Li, X., Zhong, C., Zhao, N., Deng, Y., Han, X., & Hu, W. (2020). Spontaneous Synthesis of Silver‐Nanoparticle‐Decorated Transition‐Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie, 132(18), 7312-7317. doi:10.1002/ange.202001703 es_ES
dc.description.references Han, X., Ling, X., Yu, D., Xie, D., Li, L., Peng, S., … Hu, W. (2019). Atomically Dispersed Binary Co‐Ni Sites in Nitrogen‐Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. Advanced Materials, 31(49), 1905622. doi:10.1002/adma.201905622 es_ES
dc.description.references Gupta, S., Kellogg, W., Xu, H., Liu, X., Cho, J., & Wu, G. (2015). Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chemistry - An Asian Journal, 11(1), 10-21. doi:10.1002/asia.201500640 es_ES
dc.description.references Celorrio, V., Dann, E., Calvillo, L., Morgan, D. J., Hall, S. R., & Fermin, D. J. (2015). Oxygen Reduction at Carbon-Supported Lanthanides: The Role of the B-Site. ChemElectroChem, 3(2), 283-291. doi:10.1002/celc.201500440 es_ES
dc.description.references Ashok, A., Kumar, A., Bhosale, R. R., Almomani, F., Malik, S. S., Suslov, S., & Tarlochan, F. (2018). Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. Journal of Electroanalytical Chemistry, 809, 22-30. doi:10.1016/j.jelechem.2017.12.043 es_ES
dc.description.references Sunarso, J., Torriero, A. A. J., Zhou, W., Howlett, P. C., & Forsyth, M. (2012). Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study. The Journal of Physical Chemistry C, 116(9), 5827-5834. doi:10.1021/jp211946n es_ES
dc.description.references Sun, J., Du, L., Sun, B., Han, G., Ma, Y., Wang, J., … Yin, G. (2021). A bifunctional perovskite oxide catalyst: The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping. Journal of Energy Chemistry, 54, 217-224. doi:10.1016/j.jechem.2020.05.064 es_ES
dc.description.references Liu, X., Gong, H., Wang, T., Guo, H., Song, L., Xia, W., … He, J. (2018). Cobalt-Doped Perovskite-Type Oxide LaMnO3 as Bifunctional Oxygen Catalysts for Hybrid Lithium-Oxygen Batteries. Chemistry - An Asian Journal, 13(5), 528-535. doi:10.1002/asia.201701561 es_ES
dc.description.references Hu, J., Wang, L., Shi, L., & Huang, H. (2015). Oxygen reduction reaction activity of LaMn1-xCoxO3-graphene nanocomposite for zinc-air battery. Electrochimica Acta, 161, 115-123. doi:10.1016/j.electacta.2015.02.048 es_ES
dc.description.references Lee, D. U., Park, M. G., Park, H. W., Seo, M. H., Ismayilov, V., Ahmed, R., & Chen, Z. (2015). Highly active Co-doped LaMnO 3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc–air batteries. Electrochemistry Communications, 60, 38-41. doi:10.1016/j.elecom.2015.08.001 es_ES
dc.description.references Flores-Lasluisa, J. X., Huerta, F., Cazorla-Amorós, D., & Morallón, E. (2019). Structural and morphological alterations induced by cobalt substitution in LaMnO3 perovskites. Journal of Colloid and Interface Science, 556, 658-666. doi:10.1016/j.jcis.2019.08.112 es_ES
dc.description.references Pecchi, G., Campos, C., & Peña, O. (2009). Thermal stability against reduction of LaMn1−yCoyO3 perovskites. Materials Research Bulletin, 44(4), 846-853. doi:10.1016/j.materresbull.2008.09.009 es_ES
dc.description.references Suntivich, J., Gasteiger, H. A., Yabuuchi, N., Nakanishi, H., Goodenough, J. B., & Shao-Horn, Y. (2011). Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chemistry, 3(7), 546-550. doi:10.1038/nchem.1069 es_ES
dc.description.references Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 334(6061), 1383-1385. doi:10.1126/science.1212858 es_ES
dc.description.references Safakas, A., Bampos, G., & Bebelis, S. (2019). Oxygen reduction reaction on La0.8Sr0.2CoxFe1-xO3-δ perovskite/carbon black electrocatalysts in alkaline medium. Applied Catalysis B: Environmental, 244, 225-232. doi:10.1016/j.apcatb.2018.11.015 es_ES
dc.description.references Zhao, Y., Liu, T., Shi, Q., Yang, Q., Li, C., Zhang, D., & Zhang, C. (2018). Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electrocatalyst for lithium—air batteries. Green Energy & Environment, 3(1), 78-85. doi:10.1016/j.gee.2017.12.001 es_ES
dc.description.references Xu, Y., Tsou, A., Fu, Y., Wang, J., Tian, J.-H., & Yang, R. (2015). Carbon-Coated Perovskite BaMnO3 Porous Nanorods with Enhanced Electrocatalytic Perporites for Oxygen Reduction and Oxygen Evolution. Electrochimica Acta, 174, 551-556. doi:10.1016/j.electacta.2015.05.184 es_ES
dc.description.references Alegre, C., Modica, E., Aricò, A. S., & Baglio, V. (2018). Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices. Journal of Electroanalytical Chemistry, 808, 412-419. doi:10.1016/j.jelechem.2017.06.023 es_ES
dc.description.references Hu, J., Liu, Q., Shi, Z., Zhang, L., & Huang, H. (2016). LaNiO3-nanorod/graphene composite as an efficient bi-functional catalyst for zinc–air batteries. RSC Advances, 6(89), 86386-86394. doi:10.1039/c6ra16610e es_ES
dc.description.references Mattick, V. F., Jin, X., White, R. E., & Huang, K. (2019). Understanding the role of carbon in alkaline oxygen electrocatalysis: A case study on La0.6Sr0.4CoO3-δ/Vulcan carbon composite electrocatalyst. International Journal of Hydrogen Energy, 44(5), 2760-2769. doi:10.1016/j.ijhydene.2018.12.048 es_ES
dc.description.references Liu, K., Li, J., Wang, Q., Wang, X., Qian, D., Jiang, J., … Chen, Z. (2017). Designed synthesis of LaCoO3/N-doped reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for ORR and OER in alkaline medium. Journal of Alloys and Compounds, 725, 260-269. doi:10.1016/j.jallcom.2017.07.178 es_ES
dc.description.references Park, H. W., Lee, D. U., Park, M. G., Ahmed, R., Seo, M. H., Nazar, L. F., & Chen, Z. (2015). Perovskite-Nitrogen-Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium-Air Batteries. ChemSusChem, 8(6), 1058-1065. doi:10.1002/cssc.201402986 es_ES
dc.description.references Poux, T., Napolskiy, F. S., Dintzer, T., Kéranguéven, G., Istomin, S. Y., Tsirlina, G. A., … Savinova, E. R. (2012). Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catalysis Today, 189(1), 83-92. doi:10.1016/j.cattod.2012.04.046 es_ES
dc.description.references Kéranguéven, G., Ulhaq-Bouillet, C., Papaefthimiou, V., Royer, S., & Savinova, E. (2017). Perovskite-carbon composites synthesized through in situ autocombustion for the oxygen reduction reaction: the carbon effect. Electrochimica Acta, 245, 156-164. doi:10.1016/j.electacta.2017.05.113 es_ES
dc.description.references Li, T., Liu, J., Jin, X., Wang, F., & Song, Y. (2016). Composition-dependent electro-catalytic activities of covalent carbon-LaMnO3 hybrids as synergistic catalysts for oxygen reduction reaction. Electrochimica Acta, 198, 115-126. doi:10.1016/j.electacta.2016.02.027 es_ES
dc.description.references Liu, J., Jin, X., Song, W., Wang, F., Wang, N., & Song, Y. (2014). Facile preparation of modified carbon black-LaMnO3 hybrids and the effect of covalent coupling on the catalytic activity for oxygen reduction reaction. Chinese Journal of Catalysis, 35(7), 1173-1188. doi:10.1016/s1872-2067(14)60066-8 es_ES
dc.description.references Alexander, C. T., Abakumov, A. M., Forslund, R. P., Johnston, K. P., & Stevenson, K. J. (2018). Role of the Carbon Support on the Oxygen Reduction and Evolution Activities in LaNiO3 Composite Electrodes in Alkaline Solution. ACS Applied Energy Materials, 1(4), 1549-1558. doi:10.1021/acsaem.7b00339 es_ES
dc.description.references Gabe, A., Ruiz-Rosas, R., Morallón, E., & Cazorla-Amorós, D. (2019). Understanding of oxygen reduction reaction by examining carbon-oxygen gasification reaction and carbon active sites on metal and heteroatoms free carbon materials of different porosities and structures. Carbon, 148, 430-440. doi:10.1016/j.carbon.2019.03.092 es_ES
dc.description.references Ryabova, A. S., Bonnefont, A., Simonov, P. A., Dintzer, T., Ulhaq-Bouillet, C., Bogdanova, Y. G., … Savinova, E. R. (2017). Further insights into the role of carbon in manganese oxide/carbon composites in the oxygen reduction reaction in alkaline media. Electrochimica Acta, 246, 643-653. doi:10.1016/j.electacta.2017.06.017 es_ES
dc.description.references Boldyrev, V. V. (1987). Mechanochemistry of inorganic solids. Thermochimica Acta, 110, 303-317. doi:10.1016/0040-6031(87)88239-4 es_ES
dc.description.references Xue, Y., Miao, H., Sun, S., Wang, Q., Li, S., & Liu, Z. (2017). (La1−xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 342, 192-201. doi:10.1016/j.jpowsour.2016.12.065 es_ES
dc.description.references Celorrio, V., Calvillo, L., Granozzi, G., Russell, A. E., & Fermin, D. J. (2018). AMnO3 (A = Sr, La, Ca, Y) Perovskite Oxides as Oxygen Reduction Electrocatalysts. Topics in Catalysis, 61(3-4), 154-161. doi:10.1007/s11244-018-0886-5 es_ES
dc.description.references La Rosa-Toro, A., Berenguer, R., Quijada, C., Montilla, F., Morallón, E., & Vázquez, J. L. (2006). Preparation and Characterization of Copper-Doped Cobalt Oxide Electrodes. The Journal of Physical Chemistry B, 110(47), 24021-24029. doi:10.1021/jp0642903 es_ES
dc.description.references Pawar, S. M., Pawar, B. S., Babar, P. T., Ahmed, A. T. A., Chavan, H. S., Jo, Y., … Im, H. (2019). Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis. Applied Surface Science, 470, 360-367. doi:10.1016/j.apsusc.2018.11.151 es_ES
dc.description.references Palikundwar, U. A., Sapre, V. B., Moharil, S. V., & Priolkar, K. R. (2009). Local structure around Mn and Co in LaMn1−xCoxO3 ± δ: an EXAFS study. Journal of Physics: Condensed Matter, 21(23), 235405. doi:10.1088/0953-8984/21/23/235405 es_ES
dc.description.references Mattick, V. F., Jin, X., Yang, T., White, R. E., & Huang, K. (2018). Unraveling Oxygen Electrocatalysis Mechanisms on a Thin-Film Oxygen-Deficient Perovskite La0.6Sr0.4CoO3−δ. ACS Applied Energy Materials, 1(8), 3937-3946. doi:10.1021/acsaem.8b00669 es_ES
dc.description.references Zhang, T., & Anderson, A. B. (2007). Oxygen reduction on platinum electrodes in base: Theoretical study. Electrochimica Acta, 53(2), 982-989. doi:10.1016/j.electacta.2007.08.014 es_ES
dc.description.references Wang, Y., & Cheng, H.-P. (2013). Oxygen Reduction Activity on Perovskite Oxide Surfaces: A Comparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO3. The Journal of Physical Chemistry C, 117(5), 2106-2112. doi:10.1021/jp309203k es_ES
dc.description.references Stoerzinger, K. A., Risch, M., Han, B., & Shao-Horn, Y. (2015). Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. ACS Catalysis, 5(10), 6021-6031. doi:10.1021/acscatal.5b01444 es_ES
dc.description.references Bockris, J. O., & Otagawa, T. (1984). The Electrocatalysis of Oxygen Evolution on Perovskites. Journal of The Electrochemical Society, 131(2), 290-302. doi:10.1149/1.2115565 es_ES
dc.description.references Zhao, Y., Hang, Y., Zhang, Y., Wang, Z., Yao, Y., He, X., … Zhang, D. (2017). Strontium-doped perovskite oxide La1-xSrxMnO3 (x = 0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O2 batteries. Electrochimica Acta, 232, 296-302. doi:10.1016/j.electacta.2017.02.155 es_ES
dc.description.references Yamada, I., Fujii, H., Takamatsu, A., Ikeno, H., Wada, K., Tsukasaki, H., … Yagi, S. (2016). Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites. Advanced Materials, 29(4), 1603004. doi:10.1002/adma.201603004 es_ES
dc.description.references Malkhandi, S., Trinh, P., Manohar, A. K., Manivannan, A., Balasubramanian, M., Prakash, G. K. S., & Narayanan, S. R. (2015). Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction. The Journal of Physical Chemistry C, 119(15), 8004-8013. doi:10.1021/jp512722x es_ES
dc.description.references Zhu, Y., Zhou, W., & Shao, Z. (2017). Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 13(12), 1603793. doi:10.1002/smll.201603793 es_ES
dc.description.references Mefford, J. T., Kurilovich, A. A., Saunders, J., Hardin, W. G., Abakumov, A. M., Forslund, R. P., … Stevenson, K. J. (2019). Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1−xSrxCoO3−δ perovskite composite electrodes. Physical Chemistry Chemical Physics, 21(6), 3327-3338. doi:10.1039/c8cp06268d es_ES
dc.description.references Falcón, H., Carbonio, R. ., & Fierro, J. L. . (2001). Correlation of Oxidation States in LaFexNi1-xO3+δ Oxides with Catalytic Activity for H2O2 Decomposition. Journal of Catalysis, 203(2), 264-272. doi:10.1006/jcat.2001.3351 es_ES
dc.description.references Shinagawa, T., Garcia-Esparza, A. T., & Takanabe, K. (2015). Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports, 5(1). doi:10.1038/srep13801 es_ES
dc.description.references Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519 es_ES
dc.description.references Zhou, J., Song, H., Ma, L., & Chen, X. (2011). Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Advances, 1(5), 782. doi:10.1039/c1ra00402f es_ES
dc.description.references Ge, X., Goh, F. W. T., Li, B., Hor, T. S. A., Zhang, J., Xiao, P., … Liu, Z. (2015). Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co0.55Mn0.45)0.99O3−δ nanorod/graphene hybrid in alkaline media. Nanoscale, 7(19), 9046-9054. doi:10.1039/c5nr01272d es_ES
dc.description.references Zhang, C., Wang, C., Zhan, W., Guo, Y., Guo, Y., Lu, G., … Giroir-Fendler, A. (2013). Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 129, 509-516. doi:10.1016/j.apcatb.2012.09.056 es_ES
dc.description.references Pargoletti, E., Salvi, A., Giordana, A., Cerrato, G., Longhi, M., Minguzzi, A., … Vertova, A. (2020). ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst. Nanomaterials, 10(9), 1735. doi:10.3390/nano10091735 es_ES
dc.description.references Assumpção, M. H. M. T., De Souza, R. F. B., Rascio, D. C., Silva, J. C. M., Calegaro, M. L., Gaubeur, I., … Santos, M. C. (2011). A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon, 49(8), 2842-2851. doi:10.1016/j.carbon.2011.03.014 es_ES
dc.description.references Salman, A. ul R., Hyrve, S. M., Regli, S. K., Zubair, M., Enger, B. C., Lødeng, R., … Rønning, M. (2019). Catalytic Oxidation of NO over LaCo1−xBxO3 (B = Mn, Ni) Perovskites for Nitric Acid Production. Catalysts, 9(5), 429. doi:10.3390/catal9050429 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem