- -

Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER

Mostrar el registro completo del ítem

Flores-Lasluisa, JX.; Huerta, F.; Cazorla-Amorós, D.; Morallon, E. (2020). Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER. Nanomaterials. 10(12):1-22. https://doi.org/10.3390/nano10122394

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162372

Ficheros en el ítem

Metadatos del ítem

Título: Carbon Material and Cobalt-Substitution Effects in the Electrochemical Behavior of LaMnO3 for ORR and OER
Autor: Flores-Lasluisa, Jhony X. Huerta, Francisco Cazorla-Amorós, Diego Morallon, Emilia
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Fecha difusión:
Resumen:
[EN] LaMn1-xCoxO3 perovskites were synthesized by a modified sol-gel method which incorporates EDTA. These materials' electrochemical activity towards both oxygen reduction (ORR) and oxygen evolution reactions (OER) was ...[+]
Palabras clave: Cobalt-substitution , LaMnO3 perovskite , Carbon materials , Oxygen reduction reaction , Oxygen evolution reaction
Derechos de uso: Reconocimiento (by)
Fuente:
Nanomaterials. (eissn: 2079-4991 )
DOI: 10.3390/nano10122394
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/nano10122394
Código del Proyecto:
info:eu-repo/grantAgreement/AEI//BES-2017-081598/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F087/ES/Materiales nanoestructurados en análisis químico: Nuevas estrategias de preparación de la muestra basadas en (micro)extracción en fase sólida y desarrollo de nuevos sensores electroquímicos y espectroelectroquímicos/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105923RB-I00/ES/DESARROLLO DE NUEVOS MATERIALES POR METODOS ELECTROQUIMICOS PARA APLICACIONES EN ENERGIA Y MEDIOAMBIENTE/
Agradecimientos:
This research was funded by Ministerio de Ciencia e Innovacion (Grant number: PID2019-105923RB-100) and (grant number: BES-2017-081598). And the APC was funded by Universidad de Alicante.
Tipo: Artículo

References

Xu, X., Wang, W., Zhou, W., & Shao, Z. (2018). Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy‐Related Applications. Small Methods, 2(7), 1800071. doi:10.1002/smtd.201800071

Dekel, D. R. (2018). Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources, 375, 158-169. doi:10.1016/j.jpowsour.2017.07.117

Banham, D., & Ye, S. (2017). Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2(3), 629-638. doi:10.1021/acsenergylett.6b00644 [+]
Xu, X., Wang, W., Zhou, W., & Shao, Z. (2018). Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy‐Related Applications. Small Methods, 2(7), 1800071. doi:10.1002/smtd.201800071

Dekel, D. R. (2018). Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources, 375, 158-169. doi:10.1016/j.jpowsour.2017.07.117

Banham, D., & Ye, S. (2017). Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective. ACS Energy Letters, 2(3), 629-638. doi:10.1021/acsenergylett.6b00644

McCrory, C. C. L., Jung, S., Peters, J. C., & Jaramillo, T. F. (2013). Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 135(45), 16977-16987. doi:10.1021/ja407115p

Marković, N. M., Schmidt, T. J., Stamenković, V., & Ross, P. N. (2001). Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells, 1(2), 105-116. doi:10.1002/1615-6854(200107)1:2<105::aid-fuce105>3.0.co;2-9

Chen, D., Chen, C., Baiyee, Z. M., Shao, Z., & Ciucci, F. (2015). Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 115(18), 9869-9921. doi:10.1021/acs.chemrev.5b00073

Osgood, H., Devaguptapu, S. V., Xu, H., Cho, J., & Wu, G. (2016). Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11(5), 601-625. doi:10.1016/j.nantod.2016.09.001

Longhi, M., Cova, C., Pargoletti, E., Coduri, M., Santangelo, S., Patanè, S., … Scavini, M. (2018). Synergistic Effects of Active Sites’ Nature and Hydrophilicity on the Oxygen Reduction Reaction Activity of Pt-Free Catalysts. Nanomaterials, 8(9), 643. doi:10.3390/nano8090643

Minguzzi, A., Longoni, G., Cappelletti, G., Pargoletti, E., Di Bari, C., Locatelli, C., … Vertova, A. (2016). The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances. Nanomaterials, 6(1), 10. doi:10.3390/nano6010010

Han, X., He, G., He, Y., Zhang, J., Zheng, X., Li, L., … Ma, T. (2017). Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 8(10), 1702222. doi:10.1002/aenm.201702222

Gao, S., & Geng, K. (2014). Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction. Nano Energy, 6, 44-50. doi:10.1016/j.nanoen.2014.02.013

Han, X., Zhang, W., Ma, X., Zhong, C., Zhao, N., Hu, W., & Deng, Y. (2019). Identifying the Activation of Bimetallic Sites in NiCo 2 S 4 @g‐C 3 N 4 ‐CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 31(18), 1808281. doi:10.1002/adma.201808281

Han, X., Wu, X., Deng, Y., Liu, J., Lu, J., Zhong, C., & Hu, W. (2018). Ultrafine Pt Nanoparticle‐Decorated Pyrite‐Type CoS 2 Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 8(24), 1800935. doi:10.1002/aenm.201800935

Zhang, Z., Li, X., Zhong, C., Zhao, N., Deng, Y., Han, X., & Hu, W. (2020). Spontaneous Synthesis of Silver‐Nanoparticle‐Decorated Transition‐Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie, 132(18), 7312-7317. doi:10.1002/ange.202001703

Han, X., Ling, X., Yu, D., Xie, D., Li, L., Peng, S., … Hu, W. (2019). Atomically Dispersed Binary Co‐Ni Sites in Nitrogen‐Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. Advanced Materials, 31(49), 1905622. doi:10.1002/adma.201905622

Gupta, S., Kellogg, W., Xu, H., Liu, X., Cho, J., & Wu, G. (2015). Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chemistry - An Asian Journal, 11(1), 10-21. doi:10.1002/asia.201500640

Celorrio, V., Dann, E., Calvillo, L., Morgan, D. J., Hall, S. R., & Fermin, D. J. (2015). Oxygen Reduction at Carbon-Supported Lanthanides: The Role of the B-Site. ChemElectroChem, 3(2), 283-291. doi:10.1002/celc.201500440

Ashok, A., Kumar, A., Bhosale, R. R., Almomani, F., Malik, S. S., Suslov, S., & Tarlochan, F. (2018). Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. Journal of Electroanalytical Chemistry, 809, 22-30. doi:10.1016/j.jelechem.2017.12.043

Sunarso, J., Torriero, A. A. J., Zhou, W., Howlett, P. C., & Forsyth, M. (2012). Oxygen Reduction Reaction Activity of La-Based Perovskite Oxides in Alkaline Medium: A Thin-Film Rotating Ring-Disk Electrode Study. The Journal of Physical Chemistry C, 116(9), 5827-5834. doi:10.1021/jp211946n

Sun, J., Du, L., Sun, B., Han, G., Ma, Y., Wang, J., … Yin, G. (2021). A bifunctional perovskite oxide catalyst: The triggered oxygen reduction/evolution electrocatalysis by moderated Mn-Ni co-doping. Journal of Energy Chemistry, 54, 217-224. doi:10.1016/j.jechem.2020.05.064

Liu, X., Gong, H., Wang, T., Guo, H., Song, L., Xia, W., … He, J. (2018). Cobalt-Doped Perovskite-Type Oxide LaMnO3 as Bifunctional Oxygen Catalysts for Hybrid Lithium-Oxygen Batteries. Chemistry - An Asian Journal, 13(5), 528-535. doi:10.1002/asia.201701561

Hu, J., Wang, L., Shi, L., & Huang, H. (2015). Oxygen reduction reaction activity of LaMn1-xCoxO3-graphene nanocomposite for zinc-air battery. Electrochimica Acta, 161, 115-123. doi:10.1016/j.electacta.2015.02.048

Lee, D. U., Park, M. G., Park, H. W., Seo, M. H., Ismayilov, V., Ahmed, R., & Chen, Z. (2015). Highly active Co-doped LaMnO 3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc–air batteries. Electrochemistry Communications, 60, 38-41. doi:10.1016/j.elecom.2015.08.001

Flores-Lasluisa, J. X., Huerta, F., Cazorla-Amorós, D., & Morallón, E. (2019). Structural and morphological alterations induced by cobalt substitution in LaMnO3 perovskites. Journal of Colloid and Interface Science, 556, 658-666. doi:10.1016/j.jcis.2019.08.112

Pecchi, G., Campos, C., & Peña, O. (2009). Thermal stability against reduction of LaMn1−yCoyO3 perovskites. Materials Research Bulletin, 44(4), 846-853. doi:10.1016/j.materresbull.2008.09.009

Suntivich, J., Gasteiger, H. A., Yabuuchi, N., Nakanishi, H., Goodenough, J. B., & Shao-Horn, Y. (2011). Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chemistry, 3(7), 546-550. doi:10.1038/nchem.1069

Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 334(6061), 1383-1385. doi:10.1126/science.1212858

Safakas, A., Bampos, G., & Bebelis, S. (2019). Oxygen reduction reaction on La0.8Sr0.2CoxFe1-xO3-δ perovskite/carbon black electrocatalysts in alkaline medium. Applied Catalysis B: Environmental, 244, 225-232. doi:10.1016/j.apcatb.2018.11.015

Zhao, Y., Liu, T., Shi, Q., Yang, Q., Li, C., Zhang, D., & Zhang, C. (2018). Perovskite oxides La0.4Sr0.6CoxMn1-xO3 (x = 0, 0.2, 0.4) as an effective electrocatalyst for lithium—air batteries. Green Energy & Environment, 3(1), 78-85. doi:10.1016/j.gee.2017.12.001

Xu, Y., Tsou, A., Fu, Y., Wang, J., Tian, J.-H., & Yang, R. (2015). Carbon-Coated Perovskite BaMnO3 Porous Nanorods with Enhanced Electrocatalytic Perporites for Oxygen Reduction and Oxygen Evolution. Electrochimica Acta, 174, 551-556. doi:10.1016/j.electacta.2015.05.184

Alegre, C., Modica, E., Aricò, A. S., & Baglio, V. (2018). Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices. Journal of Electroanalytical Chemistry, 808, 412-419. doi:10.1016/j.jelechem.2017.06.023

Hu, J., Liu, Q., Shi, Z., Zhang, L., & Huang, H. (2016). LaNiO3-nanorod/graphene composite as an efficient bi-functional catalyst for zinc–air batteries. RSC Advances, 6(89), 86386-86394. doi:10.1039/c6ra16610e

Mattick, V. F., Jin, X., White, R. E., & Huang, K. (2019). Understanding the role of carbon in alkaline oxygen electrocatalysis: A case study on La0.6Sr0.4CoO3-δ/Vulcan carbon composite electrocatalyst. International Journal of Hydrogen Energy, 44(5), 2760-2769. doi:10.1016/j.ijhydene.2018.12.048

Liu, K., Li, J., Wang, Q., Wang, X., Qian, D., Jiang, J., … Chen, Z. (2017). Designed synthesis of LaCoO3/N-doped reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for ORR and OER in alkaline medium. Journal of Alloys and Compounds, 725, 260-269. doi:10.1016/j.jallcom.2017.07.178

Park, H. W., Lee, D. U., Park, M. G., Ahmed, R., Seo, M. H., Nazar, L. F., & Chen, Z. (2015). Perovskite-Nitrogen-Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium-Air Batteries. ChemSusChem, 8(6), 1058-1065. doi:10.1002/cssc.201402986

Poux, T., Napolskiy, F. S., Dintzer, T., Kéranguéven, G., Istomin, S. Y., Tsirlina, G. A., … Savinova, E. R. (2012). Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catalysis Today, 189(1), 83-92. doi:10.1016/j.cattod.2012.04.046

Kéranguéven, G., Ulhaq-Bouillet, C., Papaefthimiou, V., Royer, S., & Savinova, E. (2017). Perovskite-carbon composites synthesized through in situ autocombustion for the oxygen reduction reaction: the carbon effect. Electrochimica Acta, 245, 156-164. doi:10.1016/j.electacta.2017.05.113

Li, T., Liu, J., Jin, X., Wang, F., & Song, Y. (2016). Composition-dependent electro-catalytic activities of covalent carbon-LaMnO3 hybrids as synergistic catalysts for oxygen reduction reaction. Electrochimica Acta, 198, 115-126. doi:10.1016/j.electacta.2016.02.027

Liu, J., Jin, X., Song, W., Wang, F., Wang, N., & Song, Y. (2014). Facile preparation of modified carbon black-LaMnO3 hybrids and the effect of covalent coupling on the catalytic activity for oxygen reduction reaction. Chinese Journal of Catalysis, 35(7), 1173-1188. doi:10.1016/s1872-2067(14)60066-8

Alexander, C. T., Abakumov, A. M., Forslund, R. P., Johnston, K. P., & Stevenson, K. J. (2018). Role of the Carbon Support on the Oxygen Reduction and Evolution Activities in LaNiO3 Composite Electrodes in Alkaline Solution. ACS Applied Energy Materials, 1(4), 1549-1558. doi:10.1021/acsaem.7b00339

Gabe, A., Ruiz-Rosas, R., Morallón, E., & Cazorla-Amorós, D. (2019). Understanding of oxygen reduction reaction by examining carbon-oxygen gasification reaction and carbon active sites on metal and heteroatoms free carbon materials of different porosities and structures. Carbon, 148, 430-440. doi:10.1016/j.carbon.2019.03.092

Ryabova, A. S., Bonnefont, A., Simonov, P. A., Dintzer, T., Ulhaq-Bouillet, C., Bogdanova, Y. G., … Savinova, E. R. (2017). Further insights into the role of carbon in manganese oxide/carbon composites in the oxygen reduction reaction in alkaline media. Electrochimica Acta, 246, 643-653. doi:10.1016/j.electacta.2017.06.017

Boldyrev, V. V. (1987). Mechanochemistry of inorganic solids. Thermochimica Acta, 110, 303-317. doi:10.1016/0040-6031(87)88239-4

Xue, Y., Miao, H., Sun, S., Wang, Q., Li, S., & Liu, Z. (2017). (La1−xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 342, 192-201. doi:10.1016/j.jpowsour.2016.12.065

Celorrio, V., Calvillo, L., Granozzi, G., Russell, A. E., & Fermin, D. J. (2018). AMnO3 (A = Sr, La, Ca, Y) Perovskite Oxides as Oxygen Reduction Electrocatalysts. Topics in Catalysis, 61(3-4), 154-161. doi:10.1007/s11244-018-0886-5

La Rosa-Toro, A., Berenguer, R., Quijada, C., Montilla, F., Morallón, E., & Vázquez, J. L. (2006). Preparation and Characterization of Copper-Doped Cobalt Oxide Electrodes. The Journal of Physical Chemistry B, 110(47), 24021-24029. doi:10.1021/jp0642903

Pawar, S. M., Pawar, B. S., Babar, P. T., Ahmed, A. T. A., Chavan, H. S., Jo, Y., … Im, H. (2019). Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis. Applied Surface Science, 470, 360-367. doi:10.1016/j.apsusc.2018.11.151

Palikundwar, U. A., Sapre, V. B., Moharil, S. V., & Priolkar, K. R. (2009). Local structure around Mn and Co in LaMn1−xCoxO3 ± δ: an EXAFS study. Journal of Physics: Condensed Matter, 21(23), 235405. doi:10.1088/0953-8984/21/23/235405

Mattick, V. F., Jin, X., Yang, T., White, R. E., & Huang, K. (2018). Unraveling Oxygen Electrocatalysis Mechanisms on a Thin-Film Oxygen-Deficient Perovskite La0.6Sr0.4CoO3−δ. ACS Applied Energy Materials, 1(8), 3937-3946. doi:10.1021/acsaem.8b00669

Zhang, T., & Anderson, A. B. (2007). Oxygen reduction on platinum electrodes in base: Theoretical study. Electrochimica Acta, 53(2), 982-989. doi:10.1016/j.electacta.2007.08.014

Wang, Y., & Cheng, H.-P. (2013). Oxygen Reduction Activity on Perovskite Oxide Surfaces: A Comparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO3. The Journal of Physical Chemistry C, 117(5), 2106-2112. doi:10.1021/jp309203k

Stoerzinger, K. A., Risch, M., Han, B., & Shao-Horn, Y. (2015). Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. ACS Catalysis, 5(10), 6021-6031. doi:10.1021/acscatal.5b01444

Bockris, J. O., & Otagawa, T. (1984). The Electrocatalysis of Oxygen Evolution on Perovskites. Journal of The Electrochemical Society, 131(2), 290-302. doi:10.1149/1.2115565

Zhao, Y., Hang, Y., Zhang, Y., Wang, Z., Yao, Y., He, X., … Zhang, D. (2017). Strontium-doped perovskite oxide La1-xSrxMnO3 (x = 0, 0.2, 0.6) as a highly efficient electrocatalyst for nonaqueous Li-O2 batteries. Electrochimica Acta, 232, 296-302. doi:10.1016/j.electacta.2017.02.155

Yamada, I., Fujii, H., Takamatsu, A., Ikeno, H., Wada, K., Tsukasaki, H., … Yagi, S. (2016). Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites. Advanced Materials, 29(4), 1603004. doi:10.1002/adma.201603004

Malkhandi, S., Trinh, P., Manohar, A. K., Manivannan, A., Balasubramanian, M., Prakash, G. K. S., & Narayanan, S. R. (2015). Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction. The Journal of Physical Chemistry C, 119(15), 8004-8013. doi:10.1021/jp512722x

Zhu, Y., Zhou, W., & Shao, Z. (2017). Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 13(12), 1603793. doi:10.1002/smll.201603793

Mefford, J. T., Kurilovich, A. A., Saunders, J., Hardin, W. G., Abakumov, A. M., Forslund, R. P., … Stevenson, K. J. (2019). Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La1−xSrxCoO3−δ perovskite composite electrodes. Physical Chemistry Chemical Physics, 21(6), 3327-3338. doi:10.1039/c8cp06268d

Falcón, H., Carbonio, R. ., & Fierro, J. L. . (2001). Correlation of Oxidation States in LaFexNi1-xO3+δ Oxides with Catalytic Activity for H2O2 Decomposition. Journal of Catalysis, 203(2), 264-272. doi:10.1006/jcat.2001.3351

Shinagawa, T., Garcia-Esparza, A. T., & Takanabe, K. (2015). Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports, 5(1). doi:10.1038/srep13801

Li, Q., He, R., Jensen, J. O., & Bjerrum, N. J. (2003). Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chemistry of Materials, 15(26), 4896-4915. doi:10.1021/cm0310519

Zhou, J., Song, H., Ma, L., & Chen, X. (2011). Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Advances, 1(5), 782. doi:10.1039/c1ra00402f

Ge, X., Goh, F. W. T., Li, B., Hor, T. S. A., Zhang, J., Xiao, P., … Liu, Z. (2015). Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co0.55Mn0.45)0.99O3−δ nanorod/graphene hybrid in alkaline media. Nanoscale, 7(19), 9046-9054. doi:10.1039/c5nr01272d

Zhang, C., Wang, C., Zhan, W., Guo, Y., Guo, Y., Lu, G., … Giroir-Fendler, A. (2013). Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 129, 509-516. doi:10.1016/j.apcatb.2012.09.056

Pargoletti, E., Salvi, A., Giordana, A., Cerrato, G., Longhi, M., Minguzzi, A., … Vertova, A. (2020). ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst. Nanomaterials, 10(9), 1735. doi:10.3390/nano10091735

Assumpção, M. H. M. T., De Souza, R. F. B., Rascio, D. C., Silva, J. C. M., Calegaro, M. L., Gaubeur, I., … Santos, M. C. (2011). A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon, 49(8), 2842-2851. doi:10.1016/j.carbon.2011.03.014

Salman, A. ul R., Hyrve, S. M., Regli, S. K., Zubair, M., Enger, B. C., Lødeng, R., … Rønning, M. (2019). Catalytic Oxidation of NO over LaCo1−xBxO3 (B = Mn, Ni) Perovskites for Nitric Acid Production. Catalysts, 9(5), 429. doi:10.3390/catal9050429

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem