- -

Prompt gamma spectroscopy for absolute range verification of 12C ions at synchroton-based facilities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prompt gamma spectroscopy for absolute range verification of 12C ions at synchroton-based facilities

Mostrar el registro completo del ítem

Dal Bello, R.; Martins, PM.; Brons, S.; Hermann, G.; Kihm, T.; Seimetz, M.; Seco, J. (2020). Prompt gamma spectroscopy for absolute range verification of 12C ions at synchroton-based facilities. Physics in Medicine and Biology. 65(9):1-23. https://doi.org/10.1088/1361-6560/ab7973

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162557

Ficheros en el ítem

Metadatos del ítem

Título: Prompt gamma spectroscopy for absolute range verification of 12C ions at synchroton-based facilities
Autor: Dal Bello, Riccardo Martins, Paulo Magalhaes Brons, Stephan Hermann, German Kihm, Thomas Seimetz, Michael Seco, Joao
Entidad UPV: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
[EN] The physical range uncertainty limits the exploitation of the full potential of charged particle therapy. In this work, we face this issue aiming to measure the absolute Bragg peak position in the target. We investigate ...[+]
Palabras clave: Prompt gamma , Range verification , Proton therapy , Ion-beam therapy , Charged particle therapy , Radiotherapy , Heidelberg , Ion- Beam Therapy Center
Derechos de uso: Reserva de todos los derechos
Fuente:
Physics in Medicine and Biology. (issn: 0031-9155 )
DOI: 10.1088/1361-6560/ab7973
Editorial:
IOP Publishing
Versión del editor: https://doi.org/10.1088/1361-6560/ab7973
Agradecimientos:
The author R.D.B. is supported by the International Max Planck Research School for Quantum Dynamics in Physics, Chemistry and Biology, Heidelberg, Germany. P.M.M. is supported by a research fellowship for postdoctoral ...[+]
Tipo: Artículo

References

Amaldi, U., & Kraft, G. (2005). Radiotherapy with beams of carbon ions. Reports on Progress in Physics, 68(8), 1861-1882. doi:10.1088/0034-4885/68/8/r04

Aricò, G., Gehrke, T., Gallas, R., Mairani, A., Jäkel, O., & Martišíková, M. (2019). Investigation of single carbon ion fragmentation in water and PMMA for hadron therapy. Physics in Medicine & Biology, 64(5), 055018. doi:10.1088/1361-6560/aafa46

Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., … Vlachoudis, V. (2014). The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets, 120, 211-214. doi:10.1016/j.nds.2014.07.049 [+]
Amaldi, U., & Kraft, G. (2005). Radiotherapy with beams of carbon ions. Reports on Progress in Physics, 68(8), 1861-1882. doi:10.1088/0034-4885/68/8/r04

Aricò, G., Gehrke, T., Gallas, R., Mairani, A., Jäkel, O., & Martišíková, M. (2019). Investigation of single carbon ion fragmentation in water and PMMA for hadron therapy. Physics in Medicine & Biology, 64(5), 055018. doi:10.1088/1361-6560/aafa46

Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., … Vlachoudis, V. (2014). The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets, 120, 211-214. doi:10.1016/j.nds.2014.07.049

Bragg, W. H., & Kleeman, R. (1905). XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(57), 318-340. doi:10.1080/14786440509463378

Brun, R., & Rademakers, F. (1997). ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1-2), 81-86. doi:10.1016/s0168-9002(97)00048-x

Castriconi, R., Ciocca, M., Mirandola, A., Sini, C., Broggi, S., Schwarz, M., … Russo, P. (2016). Dose–response of EBT3 radiochromic films to proton and carbon ion clinical beams. Physics in Medicine and Biology, 62(2), 377-393. doi:10.1088/1361-6560/aa5078

Guttormsen, M., Tveter, T. ., Bergholt, L., Ingebretsen, F., & Rekstad, J. (1996). The unfolding of continuum γ-ray spectra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 374(3), 371-376. doi:10.1016/0168-9002(96)00197-0

Haberer, T., Debus, J., Eickhoff, H., Jäkel, O., Schulz-Ertner, D., & Weber, U. (2004). The heidelberg ion therapy center. Radiotherapy and Oncology, 73, S186-S190. doi:10.1016/s0167-8140(04)80046-x

Hueso-González, F., Rabe, M., Ruggieri, T. A., Bortfeld, T., & Verburg, J. M. (2018). A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy. Physics in Medicine & Biology, 63(18), 185019. doi:10.1088/1361-6560/aad513

Kelleter, L., Wrońska, A., Besuglow, J., Konefał, A., Laihem, K., Leidner, J., … Tessonnier, T. (2017). Spectroscopic study of prompt-gamma emission for range verification in proton therapy. Physica Medica, 34, 7-17. doi:10.1016/j.ejmp.2017.01.003

Knopf, A.-C., & Lomax, A. (2013). In vivoproton range verification: a review. Physics in Medicine and Biology, 58(15), R131-R160. doi:10.1088/0031-9155/58/15/r131

Kozlovsky, B., Murphy, R. J., & Ramaty, R. (2002). Nuclear Deexcitation Gamma‐Ray Lines from Accelerated Particle Interactions. The Astrophysical Journal Supplement Series, 141(2), 523-541. doi:10.1086/340545

Krimmer, J., Dauvergne, D., Létang, J. M., & Testa, É. (2018). Prompt-gamma monitoring in hadrontherapy: A review. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 58-73. doi:10.1016/j.nima.2017.07.063

Leverington, B. D., Dziewiecki, M., Renner, L., & Runze, R. (2018). A prototype scintillating fibre beam profile monitor for Ion Therapy beams. Journal of Instrumentation, 13(05), P05030-P05030. doi:10.1088/1748-0221/13/05/p05030

Mein, S., Choi, K., Kopp, B., Tessonnier, T., Bauer, J., Ferrari, A., … Mairani, A. (2018). Fast robust dose calculation on GPU for high-precision 1H, 4He, 12C and 16O ion therapy: the FRoG platform. Scientific Reports, 8(1). doi:10.1038/s41598-018-33194-4

Paganetti, H. (2012). Range uncertainties in proton therapy and the role of Monte Carlo simulations. Physics in Medicine and Biology, 57(11), R99-R117. doi:10.1088/0031-9155/57/11/r99

Panaino, C., Taylor, M. J., MacKay, R., Merchant, M. J., Price, T., Pheonix, B., & Green, S. (2018). Abstract ID: 171 A Monte Carlo study to reduce range uncertainty in proton beam therapy via prompt gamma-ray detection. Physica Medica, 45, S2. doi:10.1016/j.ejmp.2017.11.027

Pinto, M., Bajard, M., Brons, S., Chevallier, M., Dauvergne, D., Dedes, G., … Testa, M. (2014). Absolute prompt-gamma yield measurements for ion beam therapy monitoring. Physics in Medicine and Biology, 60(2), 565-594. doi:10.1088/0031-9155/60/2/565

Quarati, F. G. A., Dorenbos, P., van der Biezen, J., Owens, A., Selle, M., Parthier, L., & Schotanus, P. (2013). Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 729, 596-604. doi:10.1016/j.nima.2013.08.005

Dal Bello, R., Magalhaes Martins, P., & Seco, J. (2018). CeBr3scintillators for4He prompt gamma spectroscopy: Results from a Monte Carlo optimization study. Medical Physics, 45(4), 1622-1630. doi:10.1002/mp.12795

Dal Bello, R., Magalhaes Martins, P., Graça, J., Hermann, G., Kihm, T., & Seco, J. (2019). Results from the experimental evaluation of CeBr scintillators for He prompt gamma spectroscopy. Medical Physics, 46(8), 3615-3626. doi:10.1002/mp.13594

Roemer, K., Pausch, G., Bemmerer, D., Berthel, M., Dreyer, A., Golnik, C., … Fiedler, F. (2015). Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy. Journal of Instrumentation, 10(10), P10033-P10033. doi:10.1088/1748-0221/10/10/p10033

Testa, M., Bajard, M., Chevallier, M., Dauvergne, D., Freud, N., Henriquet, P., … Testa, E. (2010). Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection. Radiation and Environmental Biophysics, 49(3), 337-343. doi:10.1007/s00411-010-0276-2

Tommasino, F., Scifoni, E., & Durante, M. (2015). New Ions for Therapy. International Journal of Particle Therapy, 2(3), 428-438. doi:10.14338/ijpt-15-00027.1

Vanstalle, M., Mattei, I., Sarti, A., Bellini, F., Bini, F., Collamati, F., … Tessa, C. L. (2017). Benchmarking Geant4 hadronic models for prompt‐ γ monitoring in carbon ion therapy. Medical Physics, 44(8), 4276-4286. doi:10.1002/mp.12348

Verburg, J. M., Riley, K., Bortfeld, T., & Seco, J. (2013). Energy- and time-resolved detection of prompt gamma-rays for proton range verification. Physics in Medicine and Biology, 58(20), L37-L49. doi:10.1088/0031-9155/58/20/l37

Verburg, J. M., & Seco, J. (2014). Proton range verification through prompt gamma-ray spectroscopy. Physics in Medicine and Biology, 59(23), 7089-7106. doi:10.1088/0031-9155/59/23/7089

Werner, F., Bauer, C., Bernhard, S., Capasso, M., Diebold, S., Eisenkolb, F., … Zietara, K. (2017). Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 876, 31-34. doi:10.1016/j.nima.2016.12.056

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem