- -

Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA

Show full item record

Mzougui, I.; Carpitella, S.; Certa, A.; El Felsoufi, Z.; Izquierdo Sebastián, J. (2020). Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA. Processes. 8(5):1-22. https://doi.org/10.3390/pr8050579

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162559

Files in this item

Item Metadata

Title: Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA
Author: Mzougui, Ilyas Carpitella, Silvia Certa, Antonella El Felsoufi, Zoubir Izquierdo Sebastián, Joaquín
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and ...[+]
Subjects: Supply chain , Criticality and risk analysis , Systems engineering , FMECA , AHP , Fuzzy DEMATEL
Copyrigths: Reconocimiento (by)
Source:
Processes. (eissn: 2227-9717 )
DOI: 10.3390/pr8050579
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/pr8050579
Type: Artículo

References

Tian, Q., & Guo, W. (2019). Reconfiguration of manufacturing supply chains considering outsourcing decisions and supply chain risks. Journal of Manufacturing Systems, 52, 217-226. doi:10.1016/j.jmsy.2019.04.005

Wu, Y., Jia, W., Li, L., Song, Z., Xu, C., & Liu, F. (2019). Risk assessment of electric vehicle supply chain based on fuzzy synthetic evaluation. Energy, 182, 397-411. doi:10.1016/j.energy.2019.06.007

Garvey, M. D., & Carnovale, S. (2020). The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation. International Journal of Production Economics, 228, 107752. doi:10.1016/j.ijpe.2020.107752 [+]
Tian, Q., & Guo, W. (2019). Reconfiguration of manufacturing supply chains considering outsourcing decisions and supply chain risks. Journal of Manufacturing Systems, 52, 217-226. doi:10.1016/j.jmsy.2019.04.005

Wu, Y., Jia, W., Li, L., Song, Z., Xu, C., & Liu, F. (2019). Risk assessment of electric vehicle supply chain based on fuzzy synthetic evaluation. Energy, 182, 397-411. doi:10.1016/j.energy.2019.06.007

Garvey, M. D., & Carnovale, S. (2020). The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation. International Journal of Production Economics, 228, 107752. doi:10.1016/j.ijpe.2020.107752

Kern, D., Moser, R., Hartmann, E., & Moder, M. (2012). Supply risk management: model development and empirical analysis. International Journal of Physical Distribution & Logistics Management, 42(1), 60-82. doi:10.1108/09600031211202472

Wang, H., Gu, T., Jin, M., Zhao, R., & Wang, G. (2018). The complexity measurement and evolution analysis of supply chain network under disruption risks. Chaos, Solitons & Fractals, 116, 72-78. doi:10.1016/j.chaos.2018.09.018

Ghoshal, S. (1987). Global strategy: An organizing framework. Strategic Management Journal, 8(5), 425-440. doi:10.1002/smj.4250080503

Schoenherr, T., Rao Tummala, V. M., & Harrison, T. P. (2008). Assessing supply chain risks with the analytic hierarchy process: Providing decision support for the offshoring decision by a US manufacturing company. Journal of Purchasing and Supply Management, 14(2), 100-111. doi:10.1016/j.pursup.2008.01.008

Xu, M., Cui, Y., Hu, M., Xu, X., Zhang, Z., Liang, S., & Qu, S. (2019). Supply chain sustainability risk and assessment. Journal of Cleaner Production, 225, 857-867. doi:10.1016/j.jclepro.2019.03.307

Tang, C., & Tomlin, B. (2008). The power of flexibility for mitigating supply chain risks. International Journal of Production Economics, 116(1), 12-27. doi:10.1016/j.ijpe.2008.07.008

Ghadge, A., Dani, S., & Kalawsky, R. (2012). Supply chain risk management: present and future scope. The International Journal of Logistics Management, 23(3), 313-339. doi:10.1108/09574091211289200

Ho, W. (2008). Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004

Lolli, F., Ishizaka, A., Gamberini, R., & Rimini, B. (2017). A multicriteria framework for inventory classification and control with application to intermittent demand. Journal of Multi-Criteria Decision Analysis, 24(5-6), 275-285. doi:10.1002/mcda.1620

Żak, J., & Kruszyński, M. (2015). Application of AHP and ELECTRE III/IV Methods to Multiple Level, Multiple Criteria Evaluation of Urban Transportation Projects. Transportation Research Procedia, 10, 820-830. doi:10.1016/j.trpro.2015.09.035

Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53, 390-404. doi:10.1016/j.jbi.2014.11.012

Chang, K.-H., Chang, Y.-C., & Lee, Y.-T. (2014). Integrating TOPSIS and DEMATEL Methods to Rank the Risk of Failure of FMEA. International Journal of Information Technology & Decision Making, 13(06), 1229-1257. doi:10.1142/s0219622014500758

Nazeri, A., & Naderikia, R. (2017). A new fuzzy approach to identify the critical risk factors in maintenance management. The International Journal of Advanced Manufacturing Technology, 92(9-12), 3749-3783. doi:10.1007/s00170-017-0222-4

Liu, H.-C., You, J.-X., Lin, Q.-L., & Li, H. (2014). Risk assessment in system FMEA combining fuzzy weighted average with fuzzy decision-making trial and evaluation laboratory. International Journal of Computer Integrated Manufacturing, 28(7), 701-714. doi:10.1080/0951192x.2014.900865

Muhammad, M. N., & Cavus, N. (2017). Fuzzy DEMATEL method for identifying LMS evaluation criteria. Procedia Computer Science, 120, 742-749. doi:10.1016/j.procs.2017.11.304

Chang, K.-H., & Cheng, C.-H. (2009). Evaluating the risk of failure using the fuzzy OWA and DEMATEL method. Journal of Intelligent Manufacturing, 22(2), 113-129. doi:10.1007/s10845-009-0266-x

March, J. G., & Shapira, Z. (1987). Managerial Perspectives on Risk and Risk Taking. Management Science, 33(11), 1404-1418. doi:10.1287/mnsc.33.11.1404

Blos, M. F., Quaddus, M., Wee, H. M., & Watanabe, K. (2009). Supply chain risk management (SCRM): a case study on the automotive and electronic industries in Brazil. Supply Chain Management: An International Journal, 14(4), 247-252. doi:10.1108/13598540910970072

Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V.-M., & Tuominen, M. (2004). Risk management processes in supplier networks. International Journal of Production Economics, 90(1), 47-58. doi:10.1016/j.ijpe.2004.02.007

Jüttner, U. (2005). Supply chain risk management. The International Journal of Logistics Management, 16(1), 120-141. doi:10.1108/09574090510617385

Gary Teng, S., Ho, S. M., Shumar, D., & Liu, P. C. (2006). Implementing FMEA in a collaborative supply chain environment. International Journal of Quality & Reliability Management, 23(2), 179-196. doi:10.1108/02656710610640943

Jüttner, U., Peck, H., & Christopher, M. (2003). Supply chain risk management: outlining an agenda for future research. International Journal of Logistics Research and Applications, 6(4), 197-210. doi:10.1080/13675560310001627016

Sodhi, M. S., Son, B.-G., & Tang, C. S. (2011). Researchers’ Perspectives on Supply Chain Risk Management. Production and Operations Management, 21(1), 1-13. doi:10.1111/j.1937-5956.2011.01251.x

Wagner, S. M., & Bode, C. (2006). An empirical investigation into supply chain vulnerability. Journal of Purchasing and Supply Management, 12(6), 301-312. doi:10.1016/j.pursup.2007.01.004

Manuj, I., & Mentzer, J. T. (2008). Global supply chain risk management strategies. International Journal of Physical Distribution & Logistics Management, 38(3), 192-223. doi:10.1108/09600030810866986

Bevilacqua, M., Ciarapica, F. E., Marcucci, G., & Mazzuto, G. (2019). Fuzzy cognitive maps approach for analysing the domino effect of factors affecting supply chain resilience: a fashion industry case study. International Journal of Production Research, 58(20), 6370-6398. doi:10.1080/00207543.2019.1680893

Bevilacqua, M., Ciarapica, F. E., Marcucci, G., & Mazzuto, G. (2018). Conceptual model for analysing domino effect among concepts affecting supply chain resilience. Supply Chain Forum: An International Journal, 19(4), 282-299. doi:10.1080/16258312.2018.1537504

Hsieh, C. Y., Wee, H. M., & Chen, A. (2016). Resilient logistics to mitigate supply chain uncertainty: A case study of an automotive company. Scientia Iranica, 23(5), 2287-2296. doi:10.24200/sci.2016.3957

Lotfi, M., & Saghiri, S. (2018). Disentangling resilience, agility and leanness. Journal of Manufacturing Technology Management, 29(1), 168-197. doi:10.1108/jmtm-01-2017-0014

Marasova, D., Andrejiova, M., & Grincova, A. (2017). Applying the Heuristic to the Risk Assessment within the Automotive Industry Supply Chain. Open Engineering, 7(1), 43-49. doi:10.1515/eng-2017-0007

Pandey, A. K., & Sharma, R. K. (2017). FMEA-based interpretive structural modelling approach to model automotive supply chain risk. International Journal of Logistics Systems and Management, 27(4), 395. doi:10.1504/ijlsm.2017.085221

Vujović, A., Đorđević, A., Gojković, R., & Borota, M. (2017). ABC Classification of Risk Factors in Production Supply Chains with Uncertain Data. Mathematical Problems in Engineering, 2017, 1-11. doi:10.1155/2017/4931797

Aven, T. (2012). The risk concept—historical and recent development trends. Reliability Engineering & System Safety, 99, 33-44. doi:10.1016/j.ress.2011.11.006

Chang, D., & Paul Sun, K. (2009). Applying DEA to enhance assessment capability of FMEA. International Journal of Quality & Reliability Management, 26(6), 629-643. doi:10.1108/02656710910966165

Chin, K.-S., Wang, Y.-M., Ka Kwai Poon, G., & Yang, J.-B. (2009). Failure mode and effects analysis using a group-based evidential reasoning approach. Computers & Operations Research, 36(6), 1768-1779. doi:10.1016/j.cor.2008.05.002

Chang, B., Chang, C.-W., & Wu, C.-H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert Systems with Applications, 38(3), 1850-1858. doi:10.1016/j.eswa.2010.07.114

Zhang, Z., & Chu, X. (2011). Risk prioritization in failure mode and effects analysis under uncertainty. Expert Systems with Applications, 38(1), 206-214. doi:10.1016/j.eswa.2010.06.046

Zhang, Y. F., Zhou, R. B., Yang, J. M., & Zhang, Z. (2014). Application of FTA-FMEA Method in Fault Diagnosis of Tracked Vehicle. Advanced Materials Research, 940, 112-115. doi:10.4028/www.scientific.net/amr.940.112

Liu, H.-C., Liu, L., Bian, Q.-H., Lin, Q.-L., Dong, N., & Xu, P.-C. (2011). Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Systems with Applications, 38(4), 4403-4415. doi:10.1016/j.eswa.2010.09.110

Liu, H.-C., Liu, L., Liu, N., & Mao, L.-X. (2012). Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Systems with Applications, 39(17), 12926-12934. doi:10.1016/j.eswa.2012.05.031

Liu, Y., Fan, Z.-P., Yuan, Y., & Li, H. (2014). A FTA-based method for risk decision-making in emergency response. Computers & Operations Research, 42, 49-57. doi:10.1016/j.cor.2012.08.015

Kutlu, A. C., & Ekmekçioğlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applications, 39(1), 61-67. doi:10.1016/j.eswa.2011.06.044

Chang, C., Liu, P., & Wei, C. (2001). Failure mode and effects analysis using grey theory. Integrated Manufacturing Systems, 12(3), 211-216. doi:10.1108/09576060110391174

Bevilacqua, M., Braglia, M., & Gabbrielli, R. (2000). Monte Carlo simulation approach for a modified FMECA in a power plant. Quality and Reliability Engineering International, 16(4), 313-324. doi:10.1002/1099-1638(200007/08)16:4<313::aid-qre434>3.0.co;2-u

Lai, G., Debo, L. G., & Sycara, K. (2009). Sharing inventory risk in supply chain: The implication of financial constraint. Omega, 37(4), 811-825. doi:10.1016/j.omega.2008.06.003

Carpitella, S., Certa, A., Izquierdo, J., & La Fata, C. M. (2018). A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliability Engineering & System Safety, 169, 394-402. doi:10.1016/j.ress.2017.09.017

Mahmoudi, S., Jalali, A., Ahmadi, M., Abasi, P., & Salari, N. (2019). Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Applied Soft Computing, 84, 105729. doi:10.1016/j.asoc.2019.105729

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record