- -

Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mzougui, Ilyas es_ES
dc.contributor.author Carpitella, Silvia es_ES
dc.contributor.author Certa, Antonella es_ES
dc.contributor.author El Felsoufi, Zoubir es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.date.accessioned 2021-03-01T08:08:06Z
dc.date.available 2021-03-01T08:08:06Z
dc.date.issued 2020-05 es_ES
dc.identifier.uri http://hdl.handle.net/10251/162559
dc.description.abstract [EN] Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and negative impacts in terms of image and prestige for companies. In circumstances of aggressive competition among companies, effective management of supply chain risks (SCRs) is crucial, and is currently a very active field of research. Failure Mode, Effects and Criticality Analysis (FMECA) has been recently extended to SCR identification and prioritization, aiming at reducing potential losses caused by lack of risk control. This article has a twofold objective. First, SCR assessment is investigated, and a comprehensive list of specific risks related to the automotive industry is compiled to extend the set of most commonly considered risks. Second, an alternative way of calculating the Risk Priority Number (RPN) is proposed within the FMECA framework by means of an integrated Multi-Criteria Decision-Making (MCDM) approach. We give a new calculation procedure by making use of the Analytic Hierarchy Process (AHP) to derive factors weights, and then the fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) to evaluate the new factor of "dependence" among the risks. The developed joint analysis constitutes a risk analysis support tool for criticality in systems engineering. The approach also deals with uncertainty and vagueness associated with input data through the use of fuzzy numbers. The results obtained from a relevant case study in the automotive industry showcase the effectiveness of this approach, which brings important value to those companies: When planning interventions of prevention/mitigation, primary importance should be given to (1) supply chain disruptions due to natural disasters; (2) manufacturing facilities, human resources, policies and breakdown processes; and (3) inefficient transport. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Processes es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Supply chain es_ES
dc.subject Criticality and risk analysis es_ES
dc.subject Systems engineering es_ES
dc.subject FMECA es_ES
dc.subject AHP es_ES
dc.subject Fuzzy DEMATEL es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/pr8050579 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Mzougui, I.; Carpitella, S.; Certa, A.; El Felsoufi, Z.; Izquierdo Sebastián, J. (2020). Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA. Processes. 8(5):1-22. https://doi.org/10.3390/pr8050579 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/pr8050579 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2227-9717 es_ES
dc.relation.pasarela S\412333 es_ES
dc.description.references Tian, Q., & Guo, W. (2019). Reconfiguration of manufacturing supply chains considering outsourcing decisions and supply chain risks. Journal of Manufacturing Systems, 52, 217-226. doi:10.1016/j.jmsy.2019.04.005 es_ES
dc.description.references Wu, Y., Jia, W., Li, L., Song, Z., Xu, C., & Liu, F. (2019). Risk assessment of electric vehicle supply chain based on fuzzy synthetic evaluation. Energy, 182, 397-411. doi:10.1016/j.energy.2019.06.007 es_ES
dc.description.references Garvey, M. D., & Carnovale, S. (2020). The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation. International Journal of Production Economics, 228, 107752. doi:10.1016/j.ijpe.2020.107752 es_ES
dc.description.references Kern, D., Moser, R., Hartmann, E., & Moder, M. (2012). Supply risk management: model development and empirical analysis. International Journal of Physical Distribution & Logistics Management, 42(1), 60-82. doi:10.1108/09600031211202472 es_ES
dc.description.references Wang, H., Gu, T., Jin, M., Zhao, R., & Wang, G. (2018). The complexity measurement and evolution analysis of supply chain network under disruption risks. Chaos, Solitons & Fractals, 116, 72-78. doi:10.1016/j.chaos.2018.09.018 es_ES
dc.description.references Ghoshal, S. (1987). Global strategy: An organizing framework. Strategic Management Journal, 8(5), 425-440. doi:10.1002/smj.4250080503 es_ES
dc.description.references Schoenherr, T., Rao Tummala, V. M., & Harrison, T. P. (2008). Assessing supply chain risks with the analytic hierarchy process: Providing decision support for the offshoring decision by a US manufacturing company. Journal of Purchasing and Supply Management, 14(2), 100-111. doi:10.1016/j.pursup.2008.01.008 es_ES
dc.description.references Xu, M., Cui, Y., Hu, M., Xu, X., Zhang, Z., Liang, S., & Qu, S. (2019). Supply chain sustainability risk and assessment. Journal of Cleaner Production, 225, 857-867. doi:10.1016/j.jclepro.2019.03.307 es_ES
dc.description.references Tang, C., & Tomlin, B. (2008). The power of flexibility for mitigating supply chain risks. International Journal of Production Economics, 116(1), 12-27. doi:10.1016/j.ijpe.2008.07.008 es_ES
dc.description.references Ghadge, A., Dani, S., & Kalawsky, R. (2012). Supply chain risk management: present and future scope. The International Journal of Logistics Management, 23(3), 313-339. doi:10.1108/09574091211289200 es_ES
dc.description.references Ho, W. (2008). Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004 es_ES
dc.description.references Lolli, F., Ishizaka, A., Gamberini, R., & Rimini, B. (2017). A multicriteria framework for inventory classification and control with application to intermittent demand. Journal of Multi-Criteria Decision Analysis, 24(5-6), 275-285. doi:10.1002/mcda.1620 es_ES
dc.description.references Żak, J., & Kruszyński, M. (2015). Application of AHP and ELECTRE III/IV Methods to Multiple Level, Multiple Criteria Evaluation of Urban Transportation Projects. Transportation Research Procedia, 10, 820-830. doi:10.1016/j.trpro.2015.09.035 es_ES
dc.description.references Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53, 390-404. doi:10.1016/j.jbi.2014.11.012 es_ES
dc.description.references Chang, K.-H., Chang, Y.-C., & Lee, Y.-T. (2014). Integrating TOPSIS and DEMATEL Methods to Rank the Risk of Failure of FMEA. International Journal of Information Technology & Decision Making, 13(06), 1229-1257. doi:10.1142/s0219622014500758 es_ES
dc.description.references Nazeri, A., & Naderikia, R. (2017). A new fuzzy approach to identify the critical risk factors in maintenance management. The International Journal of Advanced Manufacturing Technology, 92(9-12), 3749-3783. doi:10.1007/s00170-017-0222-4 es_ES
dc.description.references Liu, H.-C., You, J.-X., Lin, Q.-L., & Li, H. (2014). Risk assessment in system FMEA combining fuzzy weighted average with fuzzy decision-making trial and evaluation laboratory. International Journal of Computer Integrated Manufacturing, 28(7), 701-714. doi:10.1080/0951192x.2014.900865 es_ES
dc.description.references Muhammad, M. N., & Cavus, N. (2017). Fuzzy DEMATEL method for identifying LMS evaluation criteria. Procedia Computer Science, 120, 742-749. doi:10.1016/j.procs.2017.11.304 es_ES
dc.description.references Chang, K.-H., & Cheng, C.-H. (2009). Evaluating the risk of failure using the fuzzy OWA and DEMATEL method. Journal of Intelligent Manufacturing, 22(2), 113-129. doi:10.1007/s10845-009-0266-x es_ES
dc.description.references March, J. G., & Shapira, Z. (1987). Managerial Perspectives on Risk and Risk Taking. Management Science, 33(11), 1404-1418. doi:10.1287/mnsc.33.11.1404 es_ES
dc.description.references Blos, M. F., Quaddus, M., Wee, H. M., & Watanabe, K. (2009). Supply chain risk management (SCRM): a case study on the automotive and electronic industries in Brazil. Supply Chain Management: An International Journal, 14(4), 247-252. doi:10.1108/13598540910970072 es_ES
dc.description.references Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V.-M., & Tuominen, M. (2004). Risk management processes in supplier networks. International Journal of Production Economics, 90(1), 47-58. doi:10.1016/j.ijpe.2004.02.007 es_ES
dc.description.references Jüttner, U. (2005). Supply chain risk management. The International Journal of Logistics Management, 16(1), 120-141. doi:10.1108/09574090510617385 es_ES
dc.description.references Gary Teng, S., Ho, S. M., Shumar, D., & Liu, P. C. (2006). Implementing FMEA in a collaborative supply chain environment. International Journal of Quality & Reliability Management, 23(2), 179-196. doi:10.1108/02656710610640943 es_ES
dc.description.references Jüttner, U., Peck, H., & Christopher, M. (2003). Supply chain risk management: outlining an agenda for future research. International Journal of Logistics Research and Applications, 6(4), 197-210. doi:10.1080/13675560310001627016 es_ES
dc.description.references Sodhi, M. S., Son, B.-G., & Tang, C. S. (2011). Researchers’ Perspectives on Supply Chain Risk Management. Production and Operations Management, 21(1), 1-13. doi:10.1111/j.1937-5956.2011.01251.x es_ES
dc.description.references Wagner, S. M., & Bode, C. (2006). An empirical investigation into supply chain vulnerability. Journal of Purchasing and Supply Management, 12(6), 301-312. doi:10.1016/j.pursup.2007.01.004 es_ES
dc.description.references Manuj, I., & Mentzer, J. T. (2008). Global supply chain risk management strategies. International Journal of Physical Distribution & Logistics Management, 38(3), 192-223. doi:10.1108/09600030810866986 es_ES
dc.description.references Bevilacqua, M., Ciarapica, F. E., Marcucci, G., & Mazzuto, G. (2019). Fuzzy cognitive maps approach for analysing the domino effect of factors affecting supply chain resilience: a fashion industry case study. International Journal of Production Research, 58(20), 6370-6398. doi:10.1080/00207543.2019.1680893 es_ES
dc.description.references Bevilacqua, M., Ciarapica, F. E., Marcucci, G., & Mazzuto, G. (2018). Conceptual model for analysing domino effect among concepts affecting supply chain resilience. Supply Chain Forum: An International Journal, 19(4), 282-299. doi:10.1080/16258312.2018.1537504 es_ES
dc.description.references Hsieh, C. Y., Wee, H. M., & Chen, A. (2016). Resilient logistics to mitigate supply chain uncertainty: A case study of an automotive company. Scientia Iranica, 23(5), 2287-2296. doi:10.24200/sci.2016.3957 es_ES
dc.description.references Lotfi, M., & Saghiri, S. (2018). Disentangling resilience, agility and leanness. Journal of Manufacturing Technology Management, 29(1), 168-197. doi:10.1108/jmtm-01-2017-0014 es_ES
dc.description.references Marasova, D., Andrejiova, M., & Grincova, A. (2017). Applying the Heuristic to the Risk Assessment within the Automotive Industry Supply Chain. Open Engineering, 7(1), 43-49. doi:10.1515/eng-2017-0007 es_ES
dc.description.references Pandey, A. K., & Sharma, R. K. (2017). FMEA-based interpretive structural modelling approach to model automotive supply chain risk. International Journal of Logistics Systems and Management, 27(4), 395. doi:10.1504/ijlsm.2017.085221 es_ES
dc.description.references Vujović, A., Đorđević, A., Gojković, R., & Borota, M. (2017). ABC Classification of Risk Factors in Production Supply Chains with Uncertain Data. Mathematical Problems in Engineering, 2017, 1-11. doi:10.1155/2017/4931797 es_ES
dc.description.references Aven, T. (2012). The risk concept—historical and recent development trends. Reliability Engineering & System Safety, 99, 33-44. doi:10.1016/j.ress.2011.11.006 es_ES
dc.description.references Chang, D., & Paul Sun, K. (2009). Applying DEA to enhance assessment capability of FMEA. International Journal of Quality & Reliability Management, 26(6), 629-643. doi:10.1108/02656710910966165 es_ES
dc.description.references Chin, K.-S., Wang, Y.-M., Ka Kwai Poon, G., & Yang, J.-B. (2009). Failure mode and effects analysis using a group-based evidential reasoning approach. Computers & Operations Research, 36(6), 1768-1779. doi:10.1016/j.cor.2008.05.002 es_ES
dc.description.references Chang, B., Chang, C.-W., & Wu, C.-H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert Systems with Applications, 38(3), 1850-1858. doi:10.1016/j.eswa.2010.07.114 es_ES
dc.description.references Zhang, Z., & Chu, X. (2011). Risk prioritization in failure mode and effects analysis under uncertainty. Expert Systems with Applications, 38(1), 206-214. doi:10.1016/j.eswa.2010.06.046 es_ES
dc.description.references Zhang, Y. F., Zhou, R. B., Yang, J. M., & Zhang, Z. (2014). Application of FTA-FMEA Method in Fault Diagnosis of Tracked Vehicle. Advanced Materials Research, 940, 112-115. doi:10.4028/www.scientific.net/amr.940.112 es_ES
dc.description.references Liu, H.-C., Liu, L., Bian, Q.-H., Lin, Q.-L., Dong, N., & Xu, P.-C. (2011). Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Systems with Applications, 38(4), 4403-4415. doi:10.1016/j.eswa.2010.09.110 es_ES
dc.description.references Liu, H.-C., Liu, L., Liu, N., & Mao, L.-X. (2012). Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Systems with Applications, 39(17), 12926-12934. doi:10.1016/j.eswa.2012.05.031 es_ES
dc.description.references Liu, Y., Fan, Z.-P., Yuan, Y., & Li, H. (2014). A FTA-based method for risk decision-making in emergency response. Computers & Operations Research, 42, 49-57. doi:10.1016/j.cor.2012.08.015 es_ES
dc.description.references Kutlu, A. C., & Ekmekçioğlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applications, 39(1), 61-67. doi:10.1016/j.eswa.2011.06.044 es_ES
dc.description.references Chang, C., Liu, P., & Wei, C. (2001). Failure mode and effects analysis using grey theory. Integrated Manufacturing Systems, 12(3), 211-216. doi:10.1108/09576060110391174 es_ES
dc.description.references Bevilacqua, M., Braglia, M., & Gabbrielli, R. (2000). Monte Carlo simulation approach for a modified FMECA in a power plant. Quality and Reliability Engineering International, 16(4), 313-324. doi:10.1002/1099-1638(200007/08)16:4<313::aid-qre434>3.0.co;2-u es_ES
dc.description.references Lai, G., Debo, L. G., & Sycara, K. (2009). Sharing inventory risk in supply chain: The implication of financial constraint. Omega, 37(4), 811-825. doi:10.1016/j.omega.2008.06.003 es_ES
dc.description.references Carpitella, S., Certa, A., Izquierdo, J., & La Fata, C. M. (2018). A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliability Engineering & System Safety, 169, 394-402. doi:10.1016/j.ress.2017.09.017 es_ES
dc.description.references Mahmoudi, S., Jalali, A., Ahmadi, M., Abasi, P., & Salari, N. (2019). Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Applied Soft Computing, 84, 105729. doi:10.1016/j.asoc.2019.105729 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem