Mostrar el registro sencillo del ítem
dc.contributor.author | Mzougui, Ilyas | es_ES |
dc.contributor.author | Carpitella, Silvia | es_ES |
dc.contributor.author | Certa, Antonella | es_ES |
dc.contributor.author | El Felsoufi, Zoubir | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.date.accessioned | 2021-03-01T08:08:06Z | |
dc.date.available | 2021-03-01T08:08:06Z | |
dc.date.issued | 2020-05 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/162559 | |
dc.description.abstract | [EN] Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and negative impacts in terms of image and prestige for companies. In circumstances of aggressive competition among companies, effective management of supply chain risks (SCRs) is crucial, and is currently a very active field of research. Failure Mode, Effects and Criticality Analysis (FMECA) has been recently extended to SCR identification and prioritization, aiming at reducing potential losses caused by lack of risk control. This article has a twofold objective. First, SCR assessment is investigated, and a comprehensive list of specific risks related to the automotive industry is compiled to extend the set of most commonly considered risks. Second, an alternative way of calculating the Risk Priority Number (RPN) is proposed within the FMECA framework by means of an integrated Multi-Criteria Decision-Making (MCDM) approach. We give a new calculation procedure by making use of the Analytic Hierarchy Process (AHP) to derive factors weights, and then the fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) to evaluate the new factor of "dependence" among the risks. The developed joint analysis constitutes a risk analysis support tool for criticality in systems engineering. The approach also deals with uncertainty and vagueness associated with input data through the use of fuzzy numbers. The results obtained from a relevant case study in the automotive industry showcase the effectiveness of this approach, which brings important value to those companies: When planning interventions of prevention/mitigation, primary importance should be given to (1) supply chain disruptions due to natural disasters; (2) manufacturing facilities, human resources, policies and breakdown processes; and (3) inefficient transport. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Processes | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Supply chain | es_ES |
dc.subject | Criticality and risk analysis | es_ES |
dc.subject | Systems engineering | es_ES |
dc.subject | FMECA | es_ES |
dc.subject | AHP | es_ES |
dc.subject | Fuzzy DEMATEL | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/pr8050579 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Mzougui, I.; Carpitella, S.; Certa, A.; El Felsoufi, Z.; Izquierdo Sebastián, J. (2020). Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA. Processes. 8(5):1-22. https://doi.org/10.3390/pr8050579 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/pr8050579 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 5 | es_ES |
dc.identifier.eissn | 2227-9717 | es_ES |
dc.relation.pasarela | S\412333 | es_ES |
dc.description.references | Tian, Q., & Guo, W. (2019). Reconfiguration of manufacturing supply chains considering outsourcing decisions and supply chain risks. Journal of Manufacturing Systems, 52, 217-226. doi:10.1016/j.jmsy.2019.04.005 | es_ES |
dc.description.references | Wu, Y., Jia, W., Li, L., Song, Z., Xu, C., & Liu, F. (2019). Risk assessment of electric vehicle supply chain based on fuzzy synthetic evaluation. Energy, 182, 397-411. doi:10.1016/j.energy.2019.06.007 | es_ES |
dc.description.references | Garvey, M. D., & Carnovale, S. (2020). The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation. International Journal of Production Economics, 228, 107752. doi:10.1016/j.ijpe.2020.107752 | es_ES |
dc.description.references | Kern, D., Moser, R., Hartmann, E., & Moder, M. (2012). Supply risk management: model development and empirical analysis. International Journal of Physical Distribution & Logistics Management, 42(1), 60-82. doi:10.1108/09600031211202472 | es_ES |
dc.description.references | Wang, H., Gu, T., Jin, M., Zhao, R., & Wang, G. (2018). The complexity measurement and evolution analysis of supply chain network under disruption risks. Chaos, Solitons & Fractals, 116, 72-78. doi:10.1016/j.chaos.2018.09.018 | es_ES |
dc.description.references | Ghoshal, S. (1987). Global strategy: An organizing framework. Strategic Management Journal, 8(5), 425-440. doi:10.1002/smj.4250080503 | es_ES |
dc.description.references | Schoenherr, T., Rao Tummala, V. M., & Harrison, T. P. (2008). Assessing supply chain risks with the analytic hierarchy process: Providing decision support for the offshoring decision by a US manufacturing company. Journal of Purchasing and Supply Management, 14(2), 100-111. doi:10.1016/j.pursup.2008.01.008 | es_ES |
dc.description.references | Xu, M., Cui, Y., Hu, M., Xu, X., Zhang, Z., Liang, S., & Qu, S. (2019). Supply chain sustainability risk and assessment. Journal of Cleaner Production, 225, 857-867. doi:10.1016/j.jclepro.2019.03.307 | es_ES |
dc.description.references | Tang, C., & Tomlin, B. (2008). The power of flexibility for mitigating supply chain risks. International Journal of Production Economics, 116(1), 12-27. doi:10.1016/j.ijpe.2008.07.008 | es_ES |
dc.description.references | Ghadge, A., Dani, S., & Kalawsky, R. (2012). Supply chain risk management: present and future scope. The International Journal of Logistics Management, 23(3), 313-339. doi:10.1108/09574091211289200 | es_ES |
dc.description.references | Ho, W. (2008). Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004 | es_ES |
dc.description.references | Lolli, F., Ishizaka, A., Gamberini, R., & Rimini, B. (2017). A multicriteria framework for inventory classification and control with application to intermittent demand. Journal of Multi-Criteria Decision Analysis, 24(5-6), 275-285. doi:10.1002/mcda.1620 | es_ES |
dc.description.references | Żak, J., & Kruszyński, M. (2015). Application of AHP and ELECTRE III/IV Methods to Multiple Level, Multiple Criteria Evaluation of Urban Transportation Projects. Transportation Research Procedia, 10, 820-830. doi:10.1016/j.trpro.2015.09.035 | es_ES |
dc.description.references | Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53, 390-404. doi:10.1016/j.jbi.2014.11.012 | es_ES |
dc.description.references | Chang, K.-H., Chang, Y.-C., & Lee, Y.-T. (2014). Integrating TOPSIS and DEMATEL Methods to Rank the Risk of Failure of FMEA. International Journal of Information Technology & Decision Making, 13(06), 1229-1257. doi:10.1142/s0219622014500758 | es_ES |
dc.description.references | Nazeri, A., & Naderikia, R. (2017). A new fuzzy approach to identify the critical risk factors in maintenance management. The International Journal of Advanced Manufacturing Technology, 92(9-12), 3749-3783. doi:10.1007/s00170-017-0222-4 | es_ES |
dc.description.references | Liu, H.-C., You, J.-X., Lin, Q.-L., & Li, H. (2014). Risk assessment in system FMEA combining fuzzy weighted average with fuzzy decision-making trial and evaluation laboratory. International Journal of Computer Integrated Manufacturing, 28(7), 701-714. doi:10.1080/0951192x.2014.900865 | es_ES |
dc.description.references | Muhammad, M. N., & Cavus, N. (2017). Fuzzy DEMATEL method for identifying LMS evaluation criteria. Procedia Computer Science, 120, 742-749. doi:10.1016/j.procs.2017.11.304 | es_ES |
dc.description.references | Chang, K.-H., & Cheng, C.-H. (2009). Evaluating the risk of failure using the fuzzy OWA and DEMATEL method. Journal of Intelligent Manufacturing, 22(2), 113-129. doi:10.1007/s10845-009-0266-x | es_ES |
dc.description.references | March, J. G., & Shapira, Z. (1987). Managerial Perspectives on Risk and Risk Taking. Management Science, 33(11), 1404-1418. doi:10.1287/mnsc.33.11.1404 | es_ES |
dc.description.references | Blos, M. F., Quaddus, M., Wee, H. M., & Watanabe, K. (2009). Supply chain risk management (SCRM): a case study on the automotive and electronic industries in Brazil. Supply Chain Management: An International Journal, 14(4), 247-252. doi:10.1108/13598540910970072 | es_ES |
dc.description.references | Hallikas, J., Karvonen, I., Pulkkinen, U., Virolainen, V.-M., & Tuominen, M. (2004). Risk management processes in supplier networks. International Journal of Production Economics, 90(1), 47-58. doi:10.1016/j.ijpe.2004.02.007 | es_ES |
dc.description.references | Jüttner, U. (2005). Supply chain risk management. The International Journal of Logistics Management, 16(1), 120-141. doi:10.1108/09574090510617385 | es_ES |
dc.description.references | Gary Teng, S., Ho, S. M., Shumar, D., & Liu, P. C. (2006). Implementing FMEA in a collaborative supply chain environment. International Journal of Quality & Reliability Management, 23(2), 179-196. doi:10.1108/02656710610640943 | es_ES |
dc.description.references | Jüttner, U., Peck, H., & Christopher, M. (2003). Supply chain risk management: outlining an agenda for future research. International Journal of Logistics Research and Applications, 6(4), 197-210. doi:10.1080/13675560310001627016 | es_ES |
dc.description.references | Sodhi, M. S., Son, B.-G., & Tang, C. S. (2011). Researchers’ Perspectives on Supply Chain Risk Management. Production and Operations Management, 21(1), 1-13. doi:10.1111/j.1937-5956.2011.01251.x | es_ES |
dc.description.references | Wagner, S. M., & Bode, C. (2006). An empirical investigation into supply chain vulnerability. Journal of Purchasing and Supply Management, 12(6), 301-312. doi:10.1016/j.pursup.2007.01.004 | es_ES |
dc.description.references | Manuj, I., & Mentzer, J. T. (2008). Global supply chain risk management strategies. International Journal of Physical Distribution & Logistics Management, 38(3), 192-223. doi:10.1108/09600030810866986 | es_ES |
dc.description.references | Bevilacqua, M., Ciarapica, F. E., Marcucci, G., & Mazzuto, G. (2019). Fuzzy cognitive maps approach for analysing the domino effect of factors affecting supply chain resilience: a fashion industry case study. International Journal of Production Research, 58(20), 6370-6398. doi:10.1080/00207543.2019.1680893 | es_ES |
dc.description.references | Bevilacqua, M., Ciarapica, F. E., Marcucci, G., & Mazzuto, G. (2018). Conceptual model for analysing domino effect among concepts affecting supply chain resilience. Supply Chain Forum: An International Journal, 19(4), 282-299. doi:10.1080/16258312.2018.1537504 | es_ES |
dc.description.references | Hsieh, C. Y., Wee, H. M., & Chen, A. (2016). Resilient logistics to mitigate supply chain uncertainty: A case study of an automotive company. Scientia Iranica, 23(5), 2287-2296. doi:10.24200/sci.2016.3957 | es_ES |
dc.description.references | Lotfi, M., & Saghiri, S. (2018). Disentangling resilience, agility and leanness. Journal of Manufacturing Technology Management, 29(1), 168-197. doi:10.1108/jmtm-01-2017-0014 | es_ES |
dc.description.references | Marasova, D., Andrejiova, M., & Grincova, A. (2017). Applying the Heuristic to the Risk Assessment within the Automotive Industry Supply Chain. Open Engineering, 7(1), 43-49. doi:10.1515/eng-2017-0007 | es_ES |
dc.description.references | Pandey, A. K., & Sharma, R. K. (2017). FMEA-based interpretive structural modelling approach to model automotive supply chain risk. International Journal of Logistics Systems and Management, 27(4), 395. doi:10.1504/ijlsm.2017.085221 | es_ES |
dc.description.references | Vujović, A., Đorđević, A., Gojković, R., & Borota, M. (2017). ABC Classification of Risk Factors in Production Supply Chains with Uncertain Data. Mathematical Problems in Engineering, 2017, 1-11. doi:10.1155/2017/4931797 | es_ES |
dc.description.references | Aven, T. (2012). The risk concept—historical and recent development trends. Reliability Engineering & System Safety, 99, 33-44. doi:10.1016/j.ress.2011.11.006 | es_ES |
dc.description.references | Chang, D., & Paul Sun, K. (2009). Applying DEA to enhance assessment capability of FMEA. International Journal of Quality & Reliability Management, 26(6), 629-643. doi:10.1108/02656710910966165 | es_ES |
dc.description.references | Chin, K.-S., Wang, Y.-M., Ka Kwai Poon, G., & Yang, J.-B. (2009). Failure mode and effects analysis using a group-based evidential reasoning approach. Computers & Operations Research, 36(6), 1768-1779. doi:10.1016/j.cor.2008.05.002 | es_ES |
dc.description.references | Chang, B., Chang, C.-W., & Wu, C.-H. (2011). Fuzzy DEMATEL method for developing supplier selection criteria. Expert Systems with Applications, 38(3), 1850-1858. doi:10.1016/j.eswa.2010.07.114 | es_ES |
dc.description.references | Zhang, Z., & Chu, X. (2011). Risk prioritization in failure mode and effects analysis under uncertainty. Expert Systems with Applications, 38(1), 206-214. doi:10.1016/j.eswa.2010.06.046 | es_ES |
dc.description.references | Zhang, Y. F., Zhou, R. B., Yang, J. M., & Zhang, Z. (2014). Application of FTA-FMEA Method in Fault Diagnosis of Tracked Vehicle. Advanced Materials Research, 940, 112-115. doi:10.4028/www.scientific.net/amr.940.112 | es_ES |
dc.description.references | Liu, H.-C., Liu, L., Bian, Q.-H., Lin, Q.-L., Dong, N., & Xu, P.-C. (2011). Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Systems with Applications, 38(4), 4403-4415. doi:10.1016/j.eswa.2010.09.110 | es_ES |
dc.description.references | Liu, H.-C., Liu, L., Liu, N., & Mao, L.-X. (2012). Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Systems with Applications, 39(17), 12926-12934. doi:10.1016/j.eswa.2012.05.031 | es_ES |
dc.description.references | Liu, Y., Fan, Z.-P., Yuan, Y., & Li, H. (2014). A FTA-based method for risk decision-making in emergency response. Computers & Operations Research, 42, 49-57. doi:10.1016/j.cor.2012.08.015 | es_ES |
dc.description.references | Kutlu, A. C., & Ekmekçioğlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applications, 39(1), 61-67. doi:10.1016/j.eswa.2011.06.044 | es_ES |
dc.description.references | Chang, C., Liu, P., & Wei, C. (2001). Failure mode and effects analysis using grey theory. Integrated Manufacturing Systems, 12(3), 211-216. doi:10.1108/09576060110391174 | es_ES |
dc.description.references | Bevilacqua, M., Braglia, M., & Gabbrielli, R. (2000). Monte Carlo simulation approach for a modified FMECA in a power plant. Quality and Reliability Engineering International, 16(4), 313-324. doi:10.1002/1099-1638(200007/08)16:4<313::aid-qre434>3.0.co;2-u | es_ES |
dc.description.references | Lai, G., Debo, L. G., & Sycara, K. (2009). Sharing inventory risk in supply chain: The implication of financial constraint. Omega, 37(4), 811-825. doi:10.1016/j.omega.2008.06.003 | es_ES |
dc.description.references | Carpitella, S., Certa, A., Izquierdo, J., & La Fata, C. M. (2018). A combined multi-criteria approach to support FMECA analyses: A real-world case. Reliability Engineering & System Safety, 169, 394-402. doi:10.1016/j.ress.2017.09.017 | es_ES |
dc.description.references | Mahmoudi, S., Jalali, A., Ahmadi, M., Abasi, P., & Salari, N. (2019). Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Applied Soft Computing, 84, 105729. doi:10.1016/j.asoc.2019.105729 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |