- -

A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes

Mostrar el registro completo del ítem

Escorihuela, J.; Garcia-Bernabe, A.; Compañ Moreno, V. (2020). A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes. Polymers. 12(6):1-17. https://doi.org/10.3390/polym12061374

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162560

Ficheros en el ítem

Metadatos del ítem

Título: A Deep Insight into Different Acidic Additives as Doping Agents for Enhancing Proton Conductivity on Polybenzimidazole Membranes
Autor: Escorihuela, Jorge Garcia-Bernabe, Abel Compañ Moreno, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] The use of phosphoric acid doped polybenzimidazole (PBI) membranes for fuel cell applications has been extensively studied in the past decades. In this article, we present a systematic study of the physicochemical ...[+]
Palabras clave: Fuel cells , Proton conductivity , Electrochemical impedance spectroscopy , Polymer , Polybenzimidazole , Proton exchange membrane , Phosphoric acid , Phytic acid , Phosphotungstic acid
Derechos de uso: Reconocimiento (by)
Fuente:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym12061374
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/polym12061374
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/
Agradecimientos:
This research was funded by the Spanish Ministerio de Economia y Competitividad (MINECO) under the project ENE/2015-69203-R.
Tipo: Artículo

References

Earth’s CO2 Home Pagehttps://www.co2.earth/

Kreuer, K.-D. (1996). Proton Conductivity:  Materials and Applications. Chemistry of Materials, 8(3), 610-641. doi:10.1021/cm950192a

Kreuer, K.-D., & Portale, G. (2013). A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications. Advanced Functional Materials, 23(43), 5390-5397. doi:10.1002/adfm.201300376 [+]
Earth’s CO2 Home Pagehttps://www.co2.earth/

Kreuer, K.-D. (1996). Proton Conductivity:  Materials and Applications. Chemistry of Materials, 8(3), 610-641. doi:10.1021/cm950192a

Kreuer, K.-D., & Portale, G. (2013). A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications. Advanced Functional Materials, 23(43), 5390-5397. doi:10.1002/adfm.201300376

Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004

Papadimitriou, K. D., Paloukis, F., Neophytides, S. G., & Kallitsis, J. K. (2011). Cross-Linking of Side Chain Unsaturated Aromatic Polyethers for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. Macromolecules, 44(12), 4942-4951. doi:10.1021/ma200351z

Di Noto, V., Lavina, S., Giffin, G. A., Negro, E., & Scrosati, B. (2011). Polymer electrolytes: Present, past and future. Electrochimica Acta, 57, 4-13. doi:10.1016/j.electacta.2011.08.048

Tarascon, J.-M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. doi:10.1038/35104644

Mauritz, K. A., & Moore, R. B. (2004). State of Understanding of Nafion. Chemical Reviews, 104(10), 4535-4586. doi:10.1021/cr0207123

Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of Nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. doi:10.1016/j.jpowsour.2006.06.023

Li, Q., He, R., Gao, J.-A., Jensen, J. O., & Bjerrum, N. J. (2003). The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C. Journal of The Electrochemical Society, 150(12), A1599. doi:10.1149/1.1619984

Jannasch, P. (2003). Recent developments in high-temperature proton conducting polymer electrolyte membranes. Current Opinion in Colloid & Interface Science, 8(1), 96-102. doi:10.1016/s1359-0294(03)00006-2

Purnima, P., & Jayanti, S. (2017). Water neutrality and waste heat management in ethanol reformer - HTPEMFC integrated system for on-board hydrogen generation. Applied Energy, 199, 169-179. doi:10.1016/j.apenergy.2017.04.069

Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews, 104(10), 4587-4612. doi:10.1021/cr020711a

Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

Reinholdt, M. X., & Kaliaguine, S. (2010). Proton Exchange Membranes for Application in Fuel Cells: Grafted Silica/SPEEK Nanocomposite Elaboration and Characterization. Langmuir, 26(13), 11184-11195. doi:10.1021/la100051j

Dhanapal, Xiao, Wang, & Meng. (2019). A Review on Sulfonated Polymer Composite/Organic-Inorganic Hybrid Membranes to Address Methanol Barrier Issue for Methanol Fuel Cells. Nanomaterials, 9(5), 668. doi:10.3390/nano9050668

Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024

Asensio, J. A., Sánchez, E. M., & Gómez-Romero, P. (2010). Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews, 39(8), 3210. doi:10.1039/b922650h

Vogel, H., & Marvel, C. S. (1961). Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science, 50(154), 511-539. doi:10.1002/pol.1961.1205015419

Wainright, J. S., Wang, J. ‐T., Weng, D., Savinell, R. F., & Litt, M. (1995). Acid‐Doped Polybenzimidazoles: A New Polymer Electrolyte. Journal of The Electrochemical Society, 142(7), L121-L123. doi:10.1149/1.2044337

Quartarone, E., & Mustarelli, P. (2012). Polymer fuel cells based on polybenzimidazole/H3PO4. Energy & Environmental Science, 5(4), 6436. doi:10.1039/c2ee03055a

Wang, L., Liu, Z., Ni, J., Xu, M., Pan, C., Wang, D., … Wang, L. (2019). Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells. Journal of Membrane Science, 572, 350-357. doi:10.1016/j.memsci.2018.10.083

Wang, L., Liu, Z., Liu, Y., & Wang, L. (2019). Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells. Journal of Membrane Science, 583, 110-117. doi:10.1016/j.memsci.2019.04.030

Hu, M., Li, T., Neelakandan, S., Wang, L., & Chen, Y. (2020). Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity. Journal of Membrane Science, 593, 117435. doi:10.1016/j.memsci.2019.117435

Ni, J., Hu, M., Liu, D., Xie, H., Xiang, X., & Wang, L. (2016). Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells. Journal of Materials Chemistry C, 4(21), 4814-4821. doi:10.1039/c6tc00862c

Qingfeng, L., Hjuler, H. A., & Bjerrum, N. J. (2001). Journal of Applied Electrochemistry, 31(7), 773-779. doi:10.1023/a:1017558523354

Samms, S. R., Wasmus, S., & Savinell, R. F. (1996). Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments. Journal of The Electrochemical Society, 143(4), 1225-1232. doi:10.1149/1.1836621

Ghosh, S., Maity, S., & Jana, T. (2011). Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell. Journal of Materials Chemistry, 21(38), 14897. doi:10.1039/c1jm12169c

Escorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182

Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f

Özdemir, Y., Üregen, N., & Devrim, Y. (2017). Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2648-2657. doi:10.1016/j.ijhydene.2016.04.132

Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009

Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g

Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775

Barjola, A., Escorihuela, J., Andrio, A., Giménez, E., & Compañ, V. (2018). Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials, 8(12), 1042. doi:10.3390/nano8121042

Escorihuela, J., Narducci, R., Compañ, V., & Costantino, F. (2018). Proton Conductivity of Composite Polyelectrolyte Membranes with Metal‐Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 1801146. doi:10.1002/admi.201801146

Liu, S., Zhou, L., Wang, P., Zhang, F., Yu, S., Shao, Z., & Yi, B. (2014). Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Applied Materials & Interfaces, 6(5), 3195-3200. doi:10.1021/am404645c

Kallem, P., Eguizabal, A., Mallada, R., & Pina, M. P. (2016). Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport. ACS Applied Materials & Interfaces, 8(51), 35377-35389. doi:10.1021/acsami.6b13315

Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732

Li, Z., He, G., Zhang, B., Cao, Y., Wu, H., Jiang, Z., & Tiantian, Z. (2014). Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Interfaces, 6(12), 9799-9807. doi:10.1021/am502236v

Tanaka, M., Takeda, Y., Wakiya, T., Wakamoto, Y., Harigaya, K., Ito, T., … Kawakami, H. (2017). Acid-doped polymer nanofiber framework: Three-dimensional proton conductive network for high-performance fuel cells. Journal of Power Sources, 342, 125-134. doi:10.1016/j.jpowsour.2016.12.018

Zeng, J., Zhou, Y., Li, L., & Jiang, S. P. (2011). Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Physical Chemistry Chemical Physics, 13(21), 10249. doi:10.1039/c1cp20076c

Zhou, Y., Yang, J., Su, H., Zeng, J., Jiang, S. P., & Goddard, W. A. (2014). Insight into Proton Transfer in Phosphotungstic Acid Functionalized Mesoporous Silica-Based Proton Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 136(13), 4954-4964. doi:10.1021/ja411268q

Zhai, & Li. (2019). Polyoxometalate–Polymer Hybrid Materials as Proton Exchange Membranes for Fuel Cell Applications. Molecules, 24(19), 3425. doi:10.3390/molecules24193425

YUAN, J., ZHOU, G., & PU, H. (2008). Preparation and properties of Nafion®/hollow silica spheres composite membranes. Journal of Membrane Science, 325(2), 742-748. doi:10.1016/j.memsci.2008.08.050

Zhang, X., Fu, X., Yang, S., Zhang, Y., Zhang, R., Hu, S., … Liu, Q. (2019). Design of sepiolite-supported ionogel-embedded composite membranes without proton carrier wastage for wide-temperature-range operation of proton exchange membrane fuel cells. Journal of Materials Chemistry A, 7(25), 15288-15301. doi:10.1039/c9ta03666k

Wang, S., Zhao, C., Ma, W., Zhang, G., Liu, Z., Ni, J., … Na, H. (2012). Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells. Journal of Membrane Science, 411-412, 54-63. doi:10.1016/j.memsci.2012.04.011

Bose, S., Kuila, T., Nguyen, T. X. H., Kim, N. H., Lau, K., & Lee, J. H. (2011). Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Progress in Polymer Science, 36(6), 813-843. doi:10.1016/j.progpolymsci.2011.01.003

Choi, S.-W., Park, J., Pak, C., Choi, K., Lee, J.-C., & Chang, H. (2013). Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine) and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell. Polymers, 5(1), 77-111. doi:10.3390/polym5010077

Lu, Z., Lugo, M., Santare, M. H., Karlsson, A. M., Busby, F. C., & Walsh, P. (2012). An experimental investigation of strain rate, temperature and humidity effects on the mechanical behavior of a perfluorosulfonic acid membrane. Journal of Power Sources, 214, 130-136. doi:10.1016/j.jpowsour.2012.04.094

Yang, J., Li, Q., Cleemann, L. N., Xu, C., Jensen, J. O., Pan, C., … He, R. (2012). Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry, 22(22), 11185. doi:10.1039/c2jm30217a

Kumar B., S., Sana, B., Unnikrishnan, G., Jana, T., & Kumar K. S., S. (2020). Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 11(5), 1043-1054. doi:10.1039/c9py01403a

Li, Q., Pan, C., Jensen, J. O., Noyé, P., & Bjerrum, N. J. (2007). Cross-Linked Polybenzimidazole Membranes for Fuel Cells. Chemistry of Materials, 19(3), 350-352. doi:10.1021/cm0627793

Gao, C., Hu, M., Wang, L., & Wang, L. (2020). Synthesis and Properties of Phosphoric-Acid-Doped Polybenzimidazole with Hyperbranched Cross-Linkers Decorated with Imidazolium Groups as High-Temperature Proton Exchange Membranes. Polymers, 12(3), 515. doi:10.3390/polym12030515

Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159

Randviir, E. P., & Banks, C. E. (2013). Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Analytical Methods, 5(5), 1098. doi:10.1039/c3ay26476a

Gomadam, P. M., & Weidner, J. W. (2005). Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. International Journal of Energy Research, 29(12), 1133-1151. doi:10.1002/er.1144

Nawn, G., Pace, G., Lavina, S., Vezzù, K., Negro, E., Bertasi, F., … Di Noto, V. (2014). Interplay between Composition, Structure, and Properties of New H3PO4-Doped PBI4N–HfO2 Nanocomposite Membranes for High-Temperature Proton Exchange Membrane Fuel Cells. Macromolecules, 48(1), 15-27. doi:10.1021/ma5018956

Liu, F., Wang, S., Chen, H., Li, J., Tian, X., Wang, X., … Wang, Z. (2018). Cross-Linkable Polymeric Ionic Liquid Improve Phosphoric Acid Retention and Long-Term Conductivity Stability in Polybenzimidazole Based PEMs. ACS Sustainable Chemistry & Engineering, 6(12), 16352-16362. doi:10.1021/acssuschemeng.8b03419

Vilčiauskas, L., Tuckerman, M. E., Bester, G., Paddison, S. J., & Kreuer, K.-D. (2012). The mechanism of proton conduction in phosphoric acid. Nature Chemistry, 4(6), 461-466. doi:10.1038/nchem.1329

Bose, A. B., Gopu, S., & Li, W. (2014). Enhancement of proton exchange membrane fuel cells performance at elevated temperatures and lower humidities by incorporating immobilized phosphotungstic acid in electrodes. Journal of Power Sources, 263, 217-222. doi:10.1016/j.jpowsour.2014.04.043

Crea, F., De Stefano, C., Milea, D., & Sammartano, S. (2008). Formation and stability of phytate complexes in solution. Coordination Chemistry Reviews, 252(10-11), 1108-1120. doi:10.1016/j.ccr.2007.09.008

Lu, J. L., Fang, Q. H., Li, S. L., & Jiang, S. P. (2013). A novel phosphotungstic acid impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel cells. Journal of Membrane Science, 427, 101-107. doi:10.1016/j.memsci.2012.09.041

Wang, S., Sun, P., Li, Z., Liu, G., & Yin, X. (2018). Comprehensive performance enhancement of polybenzimidazole based high temperature proton exchange membranes by doping with a novel intercalated proton conductor. International Journal of Hydrogen Energy, 43(21), 9994-10003. doi:10.1016/j.ijhydene.2018.04.089

Kim, A. R., Vinothkannan, M., Kim, J. S., & Yoo, D. J. (2017). Proton-conducting phosphotungstic acid/sulfonated fluorinated block copolymer composite membrane for polymer electrolyte fuel cells with reduced hydrogen permeability. Polymer Bulletin, 75(7), 2779-2804. doi:10.1007/s00289-017-2180-2

Kim, A. R., Park, C. J., Vinothkannan, M., & Yoo, D. J. (2018). Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells. Composites Part B: Engineering, 155, 272-281. doi:10.1016/j.compositesb.2018.08.016

Agmon, N. (1995). The Grotthuss mechanism. Chemical Physics Letters, 244(5-6), 456-462. doi:10.1016/0009-2614(95)00905-j

Kreuer, K.-D., Rabenau, A., & Weppner, W. (1982). Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors. Angewandte Chemie International Edition in English, 21(3), 208-209. doi:10.1002/anie.198202082

Xu, C., Cao, Y., Kumar, R., Wu, X., Wang, X., & Scott, K. (2011). A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 21(30), 11359. doi:10.1039/c1jm11159k

Rewar, A. S., Chaudhari, H. D., Illathvalappil, R., Sreekumar, K., & Kharul, U. K. (2014). New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties. Journal of Materials Chemistry A, 2(35), 14449. doi:10.1039/c4ta02184c

He, R. (2003). Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science, 226(1-2), 169-184. doi:10.1016/j.memsci.2003.09.002

Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004

Compañ, V., Smith So/rensen, T., Diaz‐Calleja, R., & Riande, E. (1996). Diffusion coefficients of conductive ions in a copolymer of vinylidene cyanide and vinyl acetate obtained from dielectric measurements using the model of Trukhan. Journal of Applied Physics, 79(1), 403-411. doi:10.1063/1.360844

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem