- -

Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer

Mostrar el registro completo del ítem

García-Fernández, A.; Lozano-Torres, B.; Blandez, JF.; Monreal-Trigo, J.; Soto Camino, J.; Collazos-Castro, JE.; Alcañiz Fillol, M.... (2020). Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer. Journal of Controlled Release. 323:421-430. https://doi.org/10.1016/j.jconrel.2020.04.048

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/162562

Ficheros en el ítem

Metadatos del ítem

Título: Electro-responsive films containing voltage responsive gated mesoporous silica nanoparticles grafted onto PEDOT-based conducting polymer
Autor: García-Fernández, Alba Lozano-Torres, Beatriz Blandez, Juan F. Monreal-Trigo, Javier Soto Camino, Juan Collazos-Castro, Jorge E. Alcañiz Fillol, Miguel Marcos Martínez, María Dolores Sancenón Galarza, Félix Martínez-Máñez, Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] The characteristics and electromechanical properties of conductive polymers together to their biocompatibility have boosted their application as a suitable tool in regenerative medicine and tissue engineering. ...[+]
Palabras clave: Controlled release , Electro-responsive , Voltage-gated MSNs , Conducting polymers , PEDOT
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Controlled Release. (issn: 0168-3659 )
DOI: 10.1016/j.jconrel.2020.04.048
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jconrel.2020.04.048
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-10-17/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
Agradecimientos:
Alba Garcia-Fernandez, Beatriz Lozano-Torres contributed equally to this work. A. Garcia-Fernandez and B. Lozano-Torres are grateful to the "Ministerio de Economia y Competitividad" of the Spanish Government for her PhD ...[+]
Tipo: Artículo

References

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776

Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j [+]
Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776

Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j

Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986

Mauriello Jimenez, C., Aggad, D., Croissant, J. G., Tresfield, K., Laurencin, D., Berthomieu, D., … Durand, J.-O. (2018). Porous Porphyrin-Based Organosilica Nanoparticles for NIR Two-Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 28(21), 1800235. doi:10.1002/adfm.201800235

Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414e

Llopis-Lorente, A., de Luis, B., García-Fernández, A., Jimenez-Falcao, S., Orzáez, M., Sancenón, F., … Martínez-Máñez, R. (2018). Hybrid Mesoporous Nanocarriers Act by Processing Logic Tasks: Toward the Design of Nanobots Capable of Reading Information from the Environment. ACS Applied Materials & Interfaces, 10(31), 26494-26500. doi:10.1021/acsami.8b05920

Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d

Song, N., & Yang, Y.-W. (2015). Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 44(11), 3474-3504. doi:10.1039/c5cs00243e

Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104

De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161

Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511

Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g

Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t

Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g

Kumar, P., Tambe, P., Paknikar, K. M., & Gajbhiye, V. (2018). Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform. Journal of Controlled Release, 287, 35-57. doi:10.1016/j.jconrel.2018.08.024

Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650l

Liu, R., Zhao, X., Wu, T., & Feng, P. (2008). Tunable Redox-Responsive Hybrid Nanogated Ensembles. Journal of the American Chemical Society, 130(44), 14418-14419. doi:10.1021/ja8060886

Qu, H., Yang, L., Yu, J., Dong, T., Rong, M., Zhang, J., … Liu, H. (2017). A redox responsive controlled release system using mesoporous silica nanoparticles capped with Au nanoparticles. RSC Advances, 7(57), 35704-35710. doi:10.1039/c7ra04444e

Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139

Luo, Z., Hu, Y., Cai, K., Ding, X., Zhang, Q., Li, M., … Zhao, Y. (2014). Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials, 35(27), 7951-7962. doi:10.1016/j.biomaterials.2014.05.058

Du, X., Xiong, L., Dai, S., Kleitz, F., & Qiao, S. Z. (2014). Intracellular Microenvironment-Responsive Dendrimer-Like Mesoporous Nanohybrids for Traceable, Effective, and Safe Gene Delivery. Advanced Functional Materials, 24(48), 7627-7637. doi:10.1002/adfm.201402408

Raza, A., Hayat, U., Rasheed, T., Bilal, M., & Iqbal, H. M. N. (2018). Redox-responsive nano-carriers as tumor-targeted drug delivery systems. European Journal of Medicinal Chemistry, 157, 705-715. doi:10.1016/j.ejmech.2018.08.034

Xiao, Y., Wang, T., Cao, Y., Wang, X., Zhang, Y., Liu, Y., & Huo, Q. (2015). Enzyme and voltage stimuli-responsive controlled release system based on β-cyclodextrin-capped mesoporous silica nanoparticles. Dalton Transactions, 44(9), 4355-4361. doi:10.1039/c4dt03758h

Wang, T., Sun, G., Wang, M., Zhou, B., & Fu, J. (2015). Voltage/pH-Driven Mechanized Silica Nanoparticles for the Multimodal Controlled Release of Drugs. ACS Applied Materials & Interfaces, 7(38), 21295-21304. doi:10.1021/acsami.5b05619

Jiao, X., Sun, R., Cheng, Y., Li, F., Du, X., Wen, Y., … Zhang, X. (2017). A Voltage-Responsive Free-Blockage Controlled-Release System Based on Hydrophobicity Switching. ChemPhysChem, 18(10), 1317-1323. doi:10.1002/cphc.201700117

Khashab, N. M., Trabolsi, A., Lau, Y. A., Ambrogio, M. W., Friedman, D. C., Khatib, H. A., … Stoddart, J. F. (2009). Redox- and pH-Controlled Mechanized Nanoparticles. European Journal of Organic Chemistry, 2009(11), 1669-1673. doi:10.1002/ejoc.200801300

Guimard, N. K., Gomez, N., & Schmidt, C. E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32(8-9), 876-921. doi:10.1016/j.progpolymsci.2007.05.012

Wang, X., Zhi, L., & Müllen, K. (2007). Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 8(1), 323-327. doi:10.1021/nl072838r

Leigh, S. J., Bradley, R. J., Purssell, C. P., Billson, D. R., & Hutchins, D. A. (2012). A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors. PLoS ONE, 7(11), e49365. doi:10.1371/journal.pone.0049365

Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M. E., & Zhou, C. (2006). Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes. Nano Letters, 6(9), 1880-1886. doi:10.1021/nl0608543

Kenry, & Liu, B. (2018). Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications. Biomacromolecules, 19(6), 1783-1803. doi:10.1021/acs.biomac.8b00275

Palza, H., Zapata, P., & Angulo-Pineda, C. (2019). Electroactive Smart Polymers for Biomedical Applications. Materials, 12(2), 277. doi:10.3390/ma12020277

Naseri, M., Fotouhi, L., & Ehsani, A. (2018). Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications: A Mini-Review. The Chemical Record, 18(6), 599-618. doi:10.1002/tcr.201700101

Inal, S., Rivnay, J., Suiu, A.-O., Malliaras, G. G., & McCulloch, I. (2018). Conjugated Polymers in Bioelectronics. Accounts of Chemical Research, 51(6), 1368-1376. doi:10.1021/acs.accounts.7b00624

Aqrawe, Z., Montgomery, J., Travas-Sejdic, J., & Svirskis, D. (2017). Conducting Polymers as Electrode Coatings for Neuronal Multi-electrode Arrays. Trends in Biotechnology, 35(2), 93-95. doi:10.1016/j.tibtech.2016.06.007

Vara, H., & Collazos-Castro, J. E. (2015). Biofunctionalized Conducting Polymer/Carbon Microfiber Electrodes for Ultrasensitive Neural Recordings. ACS Applied Materials & Interfaces, 7(48), 27016-27026. doi:10.1021/acsami.5b09594

Green, R., & Abidian, M. R. (2015). Conducting Polymers for Neural Prosthetic and Neural Interface Applications. Advanced Materials, 27(46), 7620-7637. doi:10.1002/adma.201501810

Svirskis, D., Travas-Sejdic, J., Rodgers, A., & Garg, S. (2010). Electrochemically controlled drug delivery based on intrinsically conducting polymers. Journal of Controlled Release, 146(1), 6-15. doi:10.1016/j.jconrel.2010.03.023

Uppalapati, D., Boyd, B. J., Garg, S., Travas-Sejdic, J., & Svirskis, D. (2016). Conducting polymers with defined micro- or nanostructures for drug delivery. Biomaterials, 111, 149-162. doi:10.1016/j.biomaterials.2016.09.021

Alves-Sampaio, A., García-Rama, C., & Collazos-Castro, J. E. (2016). Biofunctionalized PEDOT-coated microfibers for the treatment of spinal cord injury. Biomaterials, 89, 98-113. doi:10.1016/j.biomaterials.2016.02.037

Guo, B., & Ma, P. X. (2018). Conducting Polymers for Tissue Engineering. Biomacromolecules, 19(6), 1764-1782. doi:10.1021/acs.biomac.8b00276

Wadhwa, R., Lagenaur, C. F., & Cui, X. T. (2006). Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. Journal of Controlled Release, 110(3), 531-541. doi:10.1016/j.jconrel.2005.10.027

Shamaeli, E., & Alizadeh, N. (2014). Nanostructured biocompatible thermal/electrical stimuli-responsive biopolymer-doped polypyrrole for controlled release of chlorpromazine: Kinetics studies. International Journal of Pharmaceutics, 472(1-2), 327-338. doi:10.1016/j.ijpharm.2014.06.036

Esrafilzadeh, D., Razal, J. M., Moulton, S. E., Stewart, E. M., & Wallace, G. G. (2013). Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. Journal of Controlled Release, 169(3), 313-320. doi:10.1016/j.jconrel.2013.01.022

Richardson, R. T., Wise, A. K., Thompson, B. C., Flynn, B. O., Atkinson, P. J., Fretwell, N. J., … Clark, G. M. (2009). Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials, 30(13), 2614-2624. doi:10.1016/j.biomaterials.2009.01.015

Boehler, C., Kleber, C., Martini, N., Xie, Y., Dryg, I., Stieglitz, T., … Asplund, M. (2017). Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials, 129, 176-187. doi:10.1016/j.biomaterials.2017.03.019

Collazos-Castro, J. E., Polo, J. L., Hernández-Labrado, G. R., Padial-Cañete, V., & García-Rama, C. (2010). Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials, 31(35), 9244-9255. doi:10.1016/j.biomaterials.2010.08.057

Cho, Y., Shi, R., Ivanisevic, A., & Ben Borgens, R. (2009). A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer. Nanotechnology, 20(27), 275102. doi:10.1088/0957-4484/20/27/275102

García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002

Lozano-Torres, B., Pascual, L., Bernardos, A., Marcos, M. D., Jeppesen, J. O., Salinas, Y., … Sancenón, F. (2017). Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chemical Communications, 53(25), 3559-3562. doi:10.1039/c7cc00186j

Collazos-Castro, J. E., Hernández-Labrado, G. R., Polo, J. L., & García-Rama, C. (2013). N-Cadherin- and L1-functionalised conducting polymers for synergistic stimulation and guidance of neural cell growth. Biomaterials, 34(14), 3603-3617. doi:10.1016/j.biomaterials.2013.01.097

Garcia-Breijo, E., Peris, R. M., Pinatti, C. O., Fillol, M. A., Civera, J. I., & Prats, R. B. (2013). Low-Cost Electronic Tongue System and Its Application to Explosive Detection. IEEE Transactions on Instrumentation and Measurement, 62(2), 424-431. doi:10.1109/tim.2012.2215156

Orgill, J. J., Chen, C., Schirmer, C. R., Anderson, J. L., & Lewis, R. S. (2015). Prediction of methyl viologen redox states for biological applications. Biochemical Engineering Journal, 94, 15-21. doi:10.1016/j.bej.2014.11.005

Zhang, L. (2010). Glycosaminoglycan (GAG) Biosynthesis and GAG-Binding Proteins. Glycosaminoglycans in Development, Health and Disease, 1-17. doi:10.1016/s1877-1173(10)93001-9

Collazos-Castro, J. E., García-Rama, C., & Alves-Sampaio, A. (2016). Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomaterialia, 35, 42-56. doi:10.1016/j.actbio.2016.02.023

Ito, M., & Kuwana, T. (1971). Spectroelectrochemical study of indirect reduction of triphosphopyridine nucleotide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 32(3), 415-425. doi:10.1016/s0022-0728(71)80144-4

Nezakati, T., Seifalian, A., Tan, A., & Seifalian, A. M. (2018). Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chemical Reviews, 118(14), 6766-6843. doi:10.1021/acs.chemrev.6b00275

Vitale, F., Summerson, S. R., Aazhang, B., Kemere, C., & Pasquali, M. (2015). Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes. ACS Nano, 9(4), 4465-4474. doi:10.1021/acsnano.5b01060

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem